bevy/crates/bevy_ecs/src/system/function_system.rs
Edgar Geier a830530be4
Replace all labels with interned labels (#7762)
# Objective

First of all, this PR took heavy inspiration from #7760 and #5715. It
intends to also fix #5569, but with a slightly different approach.


This also fixes #9335 by reexporting `DynEq`.

## Solution

The advantage of this API is that we can intern a value without
allocating for zero-sized-types and for enum variants that have no
fields. This PR does this automatically in the `SystemSet` and
`ScheduleLabel` derive macros for unit structs and fieldless enum
variants. So this should cover many internal and external use cases of
`SystemSet` and `ScheduleLabel`. In these optimal use cases, no memory
will be allocated.

- The interning returns a `Interned<dyn SystemSet>`, which is just a
wrapper around a `&'static dyn SystemSet`.
- `Hash` and `Eq` are implemented in terms of the pointer value of the
reference, similar to my first approach of anonymous system sets in
#7676.
- Therefore, `Interned<T>` does not implement `Borrow<T>`, only `Deref`.
- The debug output of `Interned<T>` is the same as the interned value.

Edit: 
- `AppLabel` is now also interned and the old
`derive_label`/`define_label` macros were replaced with the new
interning implementation.
- Anonymous set ids are reused for different `Schedule`s, reducing the
amount of leaked memory.

### Pros
- `InternedSystemSet` and `InternedScheduleLabel` behave very similar to
the current `BoxedSystemSet` and `BoxedScheduleLabel`, but can be copied
without an allocation.
- Many use cases don't allocate at all.
- Very fast lookups and comparisons when using `InternedSystemSet` and
`InternedScheduleLabel`.
- The `intern` module might be usable in other areas.
- `Interned{ScheduleLabel, SystemSet, AppLabel}` does implement
`{ScheduleLabel, SystemSet, AppLabel}`, increasing ergonomics.

### Cons
- Implementors of `SystemSet` and `ScheduleLabel` still need to
implement `Hash` and `Eq` (and `Clone`) for it to work.

## Changelog

### Added

- Added `intern` module to `bevy_utils`.
- Added reexports of `DynEq` to `bevy_ecs` and `bevy_app`.

### Changed

- Replaced `BoxedSystemSet` and `BoxedScheduleLabel` with
`InternedSystemSet` and `InternedScheduleLabel`.
- Replaced `impl AsRef<dyn ScheduleLabel>` with `impl ScheduleLabel`.
- Replaced `AppLabelId` with `InternedAppLabel`.
- Changed `AppLabel` to use `Debug` for error messages.
- Changed `AppLabel` to use interning.
- Changed `define_label`/`derive_label` to use interning. 
- Replaced `define_boxed_label`/`derive_boxed_label` with
`define_label`/`derive_label`.
- Changed anonymous set ids to be only unique inside a schedule, not
globally.
- Made interned label types implement their label trait. 

### Removed

- Removed `define_boxed_label` and `derive_boxed_label`. 

## Migration guide

- Replace `BoxedScheduleLabel` and `Box<dyn ScheduleLabel>` with
`InternedScheduleLabel` or `Interned<dyn ScheduleLabel>`.
- Replace `BoxedSystemSet` and `Box<dyn SystemSet>` with
`InternedSystemSet` or `Interned<dyn SystemSet>`.
- Replace `AppLabelId` with `InternedAppLabel` or `Interned<dyn
AppLabel>`.
- Types manually implementing `ScheduleLabel`, `AppLabel` or `SystemSet`
need to implement:
  - `dyn_hash` directly instead of implementing `DynHash`
  - `as_dyn_eq`
- Pass labels to `World::try_schedule_scope`, `World::schedule_scope`,
`World::try_run_schedule`. `World::run_schedule`, `Schedules::remove`,
`Schedules::remove_entry`, `Schedules::contains`, `Schedules::get` and
`Schedules::get_mut` by value instead of by reference.

---------

Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-10-25 21:39:23 +00:00

678 lines
25 KiB
Rust

use crate::{
archetype::{ArchetypeComponentId, ArchetypeGeneration},
component::{ComponentId, Tick},
prelude::FromWorld,
query::{Access, FilteredAccessSet},
schedule::{InternedSystemSet, SystemSet},
system::{check_system_change_tick, ReadOnlySystemParam, System, SystemParam, SystemParamItem},
world::{unsafe_world_cell::UnsafeWorldCell, World, WorldId},
};
use bevy_utils::all_tuples;
use std::{any::TypeId, borrow::Cow, marker::PhantomData};
#[cfg(feature = "trace")]
use bevy_utils::tracing::{info_span, Span};
use super::{In, IntoSystem, ReadOnlySystem};
/// The metadata of a [`System`].
#[derive(Clone)]
pub struct SystemMeta {
pub(crate) name: Cow<'static, str>,
pub(crate) component_access_set: FilteredAccessSet<ComponentId>,
pub(crate) archetype_component_access: Access<ArchetypeComponentId>,
// NOTE: this must be kept private. making a SystemMeta non-send is irreversible to prevent
// SystemParams from overriding each other
is_send: bool,
pub(crate) last_run: Tick,
#[cfg(feature = "trace")]
pub(crate) system_span: Span,
#[cfg(feature = "trace")]
pub(crate) commands_span: Span,
}
impl SystemMeta {
pub(crate) fn new<T>() -> Self {
let name = std::any::type_name::<T>();
Self {
name: name.into(),
archetype_component_access: Access::default(),
component_access_set: FilteredAccessSet::default(),
is_send: true,
last_run: Tick::new(0),
#[cfg(feature = "trace")]
system_span: info_span!("system", name = name),
#[cfg(feature = "trace")]
commands_span: info_span!("system_commands", name = name),
}
}
/// Returns the system's name
#[inline]
pub fn name(&self) -> &str {
&self.name
}
/// Returns true if the system is [`Send`].
#[inline]
pub fn is_send(&self) -> bool {
self.is_send
}
/// Sets the system to be not [`Send`].
///
/// This is irreversible.
#[inline]
pub fn set_non_send(&mut self) {
self.is_send = false;
}
}
// TODO: Actually use this in FunctionSystem. We should probably only do this once Systems are constructed using a World reference
// (to avoid the need for unwrapping to retrieve SystemMeta)
/// Holds on to persistent state required to drive [`SystemParam`] for a [`System`].
///
/// This is a powerful and convenient tool for working with exclusive world access,
/// allowing you to fetch data from the [`World`] as if you were running a [`System`].
/// However, simply calling `world::run_system(my_system)` using a [`World::run_system`](crate::system::World::run_system)
/// can be significantly simpler and ensures that change detection and command flushing work as expected.
///
/// Borrow-checking is handled for you, allowing you to mutably access multiple compatible system parameters at once,
/// and arbitrary system parameters (like [`EventWriter`](crate::event::EventWriter)) can be conveniently fetched.
///
/// For an alternative approach to split mutable access to the world, see [`World::resource_scope`].
///
/// # Warning
///
/// [`SystemState`] values created can be cached to improve performance,
/// and *must* be cached and reused in order for system parameters that rely on local state to work correctly.
/// These include:
/// - [`Added`](crate::query::Added) and [`Changed`](crate::query::Changed) query filters
/// - [`Local`](crate::system::Local) variables that hold state
/// - [`EventReader`](crate::event::EventReader) system parameters, which rely on a [`Local`](crate::system::Local) to track which events have been seen
///
/// Note that this is automatically handled for you when using a [`World::run_system`](crate::system::World::run_system).
///
/// # Example
///
/// Basic usage:
/// ```rust
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::SystemState;
/// # use bevy_ecs::event::Events;
/// #
/// # #[derive(Event)]
/// # struct MyEvent;
/// # #[derive(Resource)]
/// # struct MyResource(u32);
/// #
/// # #[derive(Component)]
/// # struct MyComponent;
/// #
/// // Work directly on the `World`
/// let mut world = World::new();
/// world.init_resource::<Events<MyEvent>>();
///
/// // Construct a `SystemState` struct, passing in a tuple of `SystemParam`
/// // as if you were writing an ordinary system.
/// let mut system_state: SystemState<(
/// EventWriter<MyEvent>,
/// Option<ResMut<MyResource>>,
/// Query<&MyComponent>,
/// )> = SystemState::new(&mut world);
///
/// // Use system_state.get_mut(&mut world) and unpack your system parameters into variables!
/// // system_state.get(&world) provides read-only versions of your system parameters instead.
/// let (event_writer, maybe_resource, query) = system_state.get_mut(&mut world);
///
/// // If you are using `Commands`, you can choose when you want to apply them to the world.
/// // You need to manually call `.apply(world)` on the `SystemState` to apply them.
/// ```
/// Caching:
/// ```rust
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::SystemState;
/// # use bevy_ecs::event::Events;
/// #
/// # #[derive(Event)]
/// # struct MyEvent;
/// #[derive(Resource)]
/// struct CachedSystemState {
/// event_state: SystemState<EventReader<'static, 'static, MyEvent>>,
/// }
///
/// // Create and store a system state once
/// let mut world = World::new();
/// world.init_resource::<Events<MyEvent>>();
/// let initial_state: SystemState<EventReader<MyEvent>> = SystemState::new(&mut world);
///
/// // The system state is cached in a resource
/// world.insert_resource(CachedSystemState {
/// event_state: initial_state,
/// });
///
/// // Later, fetch the cached system state, saving on overhead
/// world.resource_scope(|world, mut cached_state: Mut<CachedSystemState>| {
/// let mut event_reader = cached_state.event_state.get_mut(world);
///
/// for events in event_reader.iter() {
/// println!("Hello World!");
/// }
/// });
/// ```
pub struct SystemState<Param: SystemParam + 'static> {
meta: SystemMeta,
param_state: Param::State,
world_id: WorldId,
archetype_generation: ArchetypeGeneration,
}
impl<Param: SystemParam> SystemState<Param> {
/// Creates a new [`SystemState`] with default state.
///
/// ## Note
/// For users of [`SystemState::get_manual`] or [`get_manual_mut`](SystemState::get_manual_mut):
///
/// `new` does not cache any of the world's archetypes, so you must call [`SystemState::update_archetypes`]
/// manually before calling `get_manual{_mut}`.
pub fn new(world: &mut World) -> Self {
let mut meta = SystemMeta::new::<Param>();
meta.last_run = world.change_tick().relative_to(Tick::MAX);
let param_state = Param::init_state(world, &mut meta);
Self {
meta,
param_state,
world_id: world.id(),
archetype_generation: ArchetypeGeneration::initial(),
}
}
/// Gets the metadata for this instance.
#[inline]
pub fn meta(&self) -> &SystemMeta {
&self.meta
}
/// Retrieve the [`SystemParam`] values. This can only be called when all parameters are read-only.
#[inline]
pub fn get<'w, 's>(&'s mut self, world: &'w World) -> SystemParamItem<'w, 's, Param>
where
Param: ReadOnlySystemParam,
{
self.validate_world(world.id());
self.update_archetypes(world);
// SAFETY: Param is read-only and doesn't allow mutable access to World.
// It also matches the World this SystemState was created with.
unsafe { self.get_unchecked_manual(world.as_unsafe_world_cell_readonly()) }
}
/// Retrieve the mutable [`SystemParam`] values.
#[inline]
pub fn get_mut<'w, 's>(&'s mut self, world: &'w mut World) -> SystemParamItem<'w, 's, Param> {
self.validate_world(world.id());
self.update_archetypes(world);
// SAFETY: World is uniquely borrowed and matches the World this SystemState was created with.
unsafe { self.get_unchecked_manual(world.as_unsafe_world_cell()) }
}
/// Applies all state queued up for [`SystemParam`] values. For example, this will apply commands queued up
/// by a [`Commands`](`super::Commands`) parameter to the given [`World`].
/// This function should be called manually after the values returned by [`SystemState::get`] and [`SystemState::get_mut`]
/// are finished being used.
pub fn apply(&mut self, world: &mut World) {
Param::apply(&mut self.param_state, &self.meta, world);
}
/// Returns `true` if `world_id` matches the [`World`] that was used to call [`SystemState::new`].
/// Otherwise, this returns false.
#[inline]
pub fn matches_world(&self, world_id: WorldId) -> bool {
self.world_id == world_id
}
/// Asserts that the [`SystemState`] matches the provided world.
#[inline]
#[track_caller]
fn validate_world(&self, world_id: WorldId) {
#[inline(never)]
#[track_caller]
#[cold]
fn panic_mismatched(this: WorldId, other: WorldId) -> ! {
panic!("Encountered a mismatched World. This SystemState was created from {this:?}, but a method was called using {other:?}.");
}
if !self.matches_world(world_id) {
panic_mismatched(self.world_id, world_id);
}
}
/// Updates the state's internal view of the [`World`]'s archetypes. If this is not called before fetching the parameters,
/// the results may not accurately reflect what is in the `world`.
///
/// This is only required if [`SystemState::get_manual`] or [`SystemState::get_manual_mut`] is being called, and it only needs to
/// be called if the `world` has been structurally mutated (i.e. added/removed a component or resource). Users using
/// [`SystemState::get`] or [`SystemState::get_mut`] do not need to call this as it will be automatically called for them.
#[inline]
pub fn update_archetypes(&mut self, world: &World) {
self.update_archetypes_unsafe_world_cell(world.as_unsafe_world_cell_readonly());
}
/// Updates the state's internal view of the `world`'s archetypes. If this is not called before fetching the parameters,
/// the results may not accurately reflect what is in the `world`.
///
/// This is only required if [`SystemState::get_manual`] or [`SystemState::get_manual_mut`] is being called, and it only needs to
/// be called if the `world` has been structurally mutated (i.e. added/removed a component or resource). Users using
/// [`SystemState::get`] or [`SystemState::get_mut`] do not need to call this as it will be automatically called for them.
///
/// # Note
///
/// This method only accesses world metadata.
#[inline]
pub fn update_archetypes_unsafe_world_cell(&mut self, world: UnsafeWorldCell) {
let archetypes = world.archetypes();
let old_generation =
std::mem::replace(&mut self.archetype_generation, archetypes.generation());
for archetype in &archetypes[old_generation..] {
Param::new_archetype(&mut self.param_state, archetype, &mut self.meta);
}
}
/// Retrieve the [`SystemParam`] values. This can only be called when all parameters are read-only.
/// This will not update the state's view of the world's archetypes automatically nor increment the
/// world's change tick.
///
/// For this to return accurate results, ensure [`SystemState::update_archetypes`] is called before this
/// function.
///
/// Users should strongly prefer to use [`SystemState::get`] over this function.
#[inline]
pub fn get_manual<'w, 's>(&'s mut self, world: &'w World) -> SystemParamItem<'w, 's, Param>
where
Param: ReadOnlySystemParam,
{
self.validate_world(world.id());
let change_tick = world.read_change_tick();
// SAFETY: Param is read-only and doesn't allow mutable access to World.
// It also matches the World this SystemState was created with.
unsafe { self.fetch(world.as_unsafe_world_cell_readonly(), change_tick) }
}
/// Retrieve the mutable [`SystemParam`] values. This will not update the state's view of the world's archetypes
/// automatically nor increment the world's change tick.
///
/// For this to return accurate results, ensure [`SystemState::update_archetypes`] is called before this
/// function.
///
/// Users should strongly prefer to use [`SystemState::get_mut`] over this function.
#[inline]
pub fn get_manual_mut<'w, 's>(
&'s mut self,
world: &'w mut World,
) -> SystemParamItem<'w, 's, Param> {
self.validate_world(world.id());
let change_tick = world.change_tick();
// SAFETY: World is uniquely borrowed and matches the World this SystemState was created with.
unsafe { self.fetch(world.as_unsafe_world_cell(), change_tick) }
}
/// Retrieve the [`SystemParam`] values. This will not update archetypes automatically.
///
/// # Safety
/// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data
/// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was
/// created with.
#[inline]
pub unsafe fn get_unchecked_manual<'w, 's>(
&'s mut self,
world: UnsafeWorldCell<'w>,
) -> SystemParamItem<'w, 's, Param> {
let change_tick = world.increment_change_tick();
self.fetch(world, change_tick)
}
/// # Safety
/// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data
/// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was
/// created with.
#[inline]
unsafe fn fetch<'w, 's>(
&'s mut self,
world: UnsafeWorldCell<'w>,
change_tick: Tick,
) -> SystemParamItem<'w, 's, Param> {
let param = Param::get_param(&mut self.param_state, &self.meta, world, change_tick);
self.meta.last_run = change_tick;
param
}
}
impl<Param: SystemParam> FromWorld for SystemState<Param> {
fn from_world(world: &mut World) -> Self {
Self::new(world)
}
}
/// The [`System`] counter part of an ordinary function.
///
/// You get this by calling [`IntoSystem::into_system`] on a function that only accepts
/// [`SystemParam`]s. The output of the system becomes the functions return type, while the input
/// becomes the functions [`In`] tagged parameter or `()` if no such parameter exists.
///
/// [`FunctionSystem`] must be `.initialized` before they can be run.
///
/// The [`Clone`] implementation for [`FunctionSystem`] returns a new instance which
/// is NOT initialized. The cloned system must also be `.initialized` before it can be run.
pub struct FunctionSystem<Marker, F>
where
F: SystemParamFunction<Marker>,
{
func: F,
param_state: Option<<F::Param as SystemParam>::State>,
system_meta: SystemMeta,
world_id: Option<WorldId>,
archetype_generation: ArchetypeGeneration,
// NOTE: PhantomData<fn()-> T> gives this safe Send/Sync impls
marker: PhantomData<fn() -> Marker>,
}
// De-initializes the cloned system.
impl<Marker, F> Clone for FunctionSystem<Marker, F>
where
F: SystemParamFunction<Marker> + Clone,
{
fn clone(&self) -> Self {
Self {
func: self.func.clone(),
param_state: None,
system_meta: SystemMeta::new::<F>(),
world_id: None,
archetype_generation: ArchetypeGeneration::initial(),
marker: PhantomData,
}
}
}
/// A marker type used to distinguish regular function systems from exclusive function systems.
#[doc(hidden)]
pub struct IsFunctionSystem;
impl<Marker, F> IntoSystem<F::In, F::Out, (IsFunctionSystem, Marker)> for F
where
Marker: 'static,
F: SystemParamFunction<Marker>,
{
type System = FunctionSystem<Marker, F>;
fn into_system(func: Self) -> Self::System {
FunctionSystem {
func,
param_state: None,
system_meta: SystemMeta::new::<F>(),
world_id: None,
archetype_generation: ArchetypeGeneration::initial(),
marker: PhantomData,
}
}
}
impl<Marker, F> FunctionSystem<Marker, F>
where
F: SystemParamFunction<Marker>,
{
/// Message shown when a system isn't initialised
// When lines get too long, rustfmt can sometimes refuse to format them.
// Work around this by storing the message separately.
const PARAM_MESSAGE: &'static str = "System's param_state was not found. Did you forget to initialize this system before running it?";
}
impl<Marker, F> System for FunctionSystem<Marker, F>
where
Marker: 'static,
F: SystemParamFunction<Marker>,
{
type In = F::In;
type Out = F::Out;
#[inline]
fn name(&self) -> Cow<'static, str> {
self.system_meta.name.clone()
}
#[inline]
fn type_id(&self) -> TypeId {
TypeId::of::<F>()
}
#[inline]
fn component_access(&self) -> &Access<ComponentId> {
self.system_meta.component_access_set.combined_access()
}
#[inline]
fn archetype_component_access(&self) -> &Access<ArchetypeComponentId> {
&self.system_meta.archetype_component_access
}
#[inline]
fn is_send(&self) -> bool {
self.system_meta.is_send
}
#[inline]
fn is_exclusive(&self) -> bool {
false
}
#[inline]
unsafe fn run_unsafe(&mut self, input: Self::In, world: UnsafeWorldCell) -> Self::Out {
#[cfg(feature = "trace")]
let _span_guard = self.system_meta.system_span.enter();
let change_tick = world.increment_change_tick();
// SAFETY:
// - The caller has invoked `update_archetype_component_access`, which will panic
// if the world does not match.
// - All world accesses used by `F::Param` have been registered, so the caller
// will ensure that there are no data access conflicts.
let params = F::Param::get_param(
self.param_state.as_mut().expect(Self::PARAM_MESSAGE),
&self.system_meta,
world,
change_tick,
);
let out = self.func.run(input, params);
self.system_meta.last_run = change_tick;
out
}
fn get_last_run(&self) -> Tick {
self.system_meta.last_run
}
fn set_last_run(&mut self, last_run: Tick) {
self.system_meta.last_run = last_run;
}
#[inline]
fn apply_deferred(&mut self, world: &mut World) {
let param_state = self.param_state.as_mut().expect(Self::PARAM_MESSAGE);
F::Param::apply(param_state, &self.system_meta, world);
}
#[inline]
fn initialize(&mut self, world: &mut World) {
self.world_id = Some(world.id());
self.system_meta.last_run = world.change_tick().relative_to(Tick::MAX);
self.param_state = Some(F::Param::init_state(world, &mut self.system_meta));
}
fn update_archetype_component_access(&mut self, world: UnsafeWorldCell) {
assert!(self.world_id == Some(world.id()), "Encountered a mismatched World. A System cannot be used with Worlds other than the one it was initialized with.");
let archetypes = world.archetypes();
let old_generation =
std::mem::replace(&mut self.archetype_generation, archetypes.generation());
for archetype in &archetypes[old_generation..] {
let param_state = self.param_state.as_mut().unwrap();
F::Param::new_archetype(param_state, archetype, &mut self.system_meta);
}
}
#[inline]
fn check_change_tick(&mut self, change_tick: Tick) {
check_system_change_tick(
&mut self.system_meta.last_run,
change_tick,
self.system_meta.name.as_ref(),
);
}
fn default_system_sets(&self) -> Vec<InternedSystemSet> {
let set = crate::schedule::SystemTypeSet::<F>::new();
vec![set.intern()]
}
}
/// SAFETY: `F`'s param is [`ReadOnlySystemParam`], so this system will only read from the world.
unsafe impl<Marker, F> ReadOnlySystem for FunctionSystem<Marker, F>
where
Marker: 'static,
F: SystemParamFunction<Marker>,
F::Param: ReadOnlySystemParam,
{
}
/// A trait implemented for all functions that can be used as [`System`]s.
///
/// This trait can be useful for making your own systems which accept other systems,
/// sometimes called higher order systems.
///
/// This should be used in combination with [`ParamSet`] when calling other systems
/// within your system.
/// Using [`ParamSet`] in this case avoids [`SystemParam`] collisions.
///
/// # Example
///
/// To create something like [`PipeSystem`], but in entirely safe code.
///
/// ```rust
/// use std::num::ParseIntError;
///
/// use bevy_ecs::prelude::*;
///
/// /// Pipe creates a new system which calls `a`, then calls `b` with the output of `a`
/// pub fn pipe<A, B, AMarker, BMarker>(
/// mut a: A,
/// mut b: B,
/// ) -> impl FnMut(In<A::In>, ParamSet<(A::Param, B::Param)>) -> B::Out
/// where
/// // We need A and B to be systems, add those bounds
/// A: SystemParamFunction<AMarker>,
/// B: SystemParamFunction<BMarker, In = A::Out>,
/// {
/// // The type of `params` is inferred based on the return of this function above
/// move |In(a_in), mut params| {
/// let shared = a.run(a_in, params.p0());
/// b.run(shared, params.p1())
/// }
/// }
///
/// // Usage example for `pipe`:
/// fn main() {
/// let mut world = World::default();
/// world.insert_resource(Message("42".to_string()));
///
/// // pipe the `parse_message_system`'s output into the `filter_system`s input
/// let mut piped_system = IntoSystem::into_system(pipe(parse_message, filter));
/// piped_system.initialize(&mut world);
/// assert_eq!(piped_system.run((), &mut world), Some(42));
/// }
///
/// #[derive(Resource)]
/// struct Message(String);
///
/// fn parse_message(message: Res<Message>) -> Result<usize, ParseIntError> {
/// message.0.parse::<usize>()
/// }
///
/// fn filter(In(result): In<Result<usize, ParseIntError>>) -> Option<usize> {
/// result.ok().filter(|&n| n < 100)
/// }
/// ```
/// [`PipeSystem`]: crate::system::PipeSystem
/// [`ParamSet`]: crate::system::ParamSet
pub trait SystemParamFunction<Marker>: Send + Sync + 'static {
/// The input type to this system. See [`System::In`].
type In;
/// The return type of this system. See [`System::Out`].
type Out;
/// The [`SystemParam`]/s used by this system to access the [`World`].
type Param: SystemParam;
/// Executes this system once. See [`System::run`] or [`System::run_unsafe`].
fn run(&mut self, input: Self::In, param_value: SystemParamItem<Self::Param>) -> Self::Out;
}
macro_rules! impl_system_function {
($($param: ident),*) => {
#[allow(non_snake_case)]
impl<Out, Func: Send + Sync + 'static, $($param: SystemParam),*> SystemParamFunction<fn($($param,)*) -> Out> for Func
where
for <'a> &'a mut Func:
FnMut($($param),*) -> Out +
FnMut($(SystemParamItem<$param>),*) -> Out, Out: 'static
{
type In = ();
type Out = Out;
type Param = ($($param,)*);
#[inline]
fn run(&mut self, _input: (), param_value: SystemParamItem< ($($param,)*)>) -> Out {
// Yes, this is strange, but `rustc` fails to compile this impl
// without using this function. It fails to recognize that `func`
// is a function, potentially because of the multiple impls of `FnMut`
#[allow(clippy::too_many_arguments)]
fn call_inner<Out, $($param,)*>(
mut f: impl FnMut($($param,)*)->Out,
$($param: $param,)*
)->Out{
f($($param,)*)
}
let ($($param,)*) = param_value;
call_inner(self, $($param),*)
}
}
#[allow(non_snake_case)]
impl<Input, Out, Func: Send + Sync + 'static, $($param: SystemParam),*> SystemParamFunction<fn(In<Input>, $($param,)*) -> Out> for Func
where
for <'a> &'a mut Func:
FnMut(In<Input>, $($param),*) -> Out +
FnMut(In<Input>, $(SystemParamItem<$param>),*) -> Out, Out: 'static
{
type In = Input;
type Out = Out;
type Param = ($($param,)*);
#[inline]
fn run(&mut self, input: Input, param_value: SystemParamItem< ($($param,)*)>) -> Out {
#[allow(clippy::too_many_arguments)]
fn call_inner<Input, Out, $($param,)*>(
mut f: impl FnMut(In<Input>, $($param,)*)->Out,
input: In<Input>,
$($param: $param,)*
)->Out{
f(input, $($param,)*)
}
let ($($param,)*) = param_value;
call_inner(self, In(input), $($param),*)
}
}
};
}
// Note that we rely on the highest impl to be <= the highest order of the tuple impls
// of `SystemParam` created.
all_tuples!(impl_system_function, 0, 16, F);