bevy/crates/bevy_gizmos/src/rounded_box.rs
Robert Walter 8895113784
Use Isometry in bevy_gizmos wherever we can (#14676)
# Objective

- Solves the last bullet in and closes #14319
- Make better use of the `Isometry` types
- Prevent issues like #14655
- Probably simplify and clean up a lot of code through the use of Gizmos
as well (i.e. the 3D gizmos for cylinders circles & lines don't connect
well, probably due to wrong rotations)

## Solution

- go through the `bevy_gizmos` crate and give all methods a slight
workover

## Testing

- For all the changed examples I run `git switch main && cargo rr
--example <X> && git switch <BRANCH> && cargo rr --example <X>` and
compare the visual results
- Check if all doc tests are still compiling
- Check the docs in general and update them !!! 

---

## Migration Guide

The gizmos methods function signature changes as follows:

- 2D
- if it took `position` & `rotation_angle` before ->
`Isometry2d::new(position, Rot2::radians(rotation_angle))`
- if it just took `position` before ->
`Isometry2d::from_translation(position)`
- 3D
- if it took `position` & `rotation` before ->
`Isometry3d::new(position, rotation)`
- if it just took `position` before ->
`Isometry3d::from_translation(position)`
2024-08-28 01:37:19 +00:00

373 lines
13 KiB
Rust

//! Additional [`Gizmos`] Functions -- Rounded cuboids and rectangles
//!
//! Includes the implementation of [`Gizmos::rounded_rect`], [`Gizmos::rounded_rect_2d`] and [`Gizmos::rounded_cuboid`].
//! and assorted support items.
use std::f32::consts::FRAC_PI_2;
use crate::prelude::{GizmoConfigGroup, Gizmos};
use bevy_color::Color;
use bevy_math::{Isometry2d, Isometry3d, Quat, Vec2, Vec3};
use bevy_transform::components::Transform;
/// A builder returned by [`Gizmos::rounded_rect`] and [`Gizmos::rounded_rect_2d`]
pub struct RoundedRectBuilder<'a, 'w, 's, T: GizmoConfigGroup> {
size: Vec2,
gizmos: &'a mut Gizmos<'w, 's, T>,
config: RoundedBoxConfig,
}
/// A builder returned by [`Gizmos::rounded_cuboid`]
pub struct RoundedCuboidBuilder<'a, 'w, 's, T: GizmoConfigGroup> {
size: Vec3,
gizmos: &'a mut Gizmos<'w, 's, T>,
config: RoundedBoxConfig,
}
struct RoundedBoxConfig {
isometry: Isometry3d,
color: Color,
corner_radius: f32,
arc_resolution: u32,
}
impl<T: GizmoConfigGroup> RoundedRectBuilder<'_, '_, '_, T> {
/// Change the radius of the corners to be `corner_radius`.
/// The default corner radius is [min axis of size] / 10.0
pub fn corner_radius(mut self, corner_radius: f32) -> Self {
self.config.corner_radius = corner_radius;
self
}
/// Change the resolution of the arcs at the corners of the rectangle.
/// The default value is 8
pub fn arc_resolution(mut self, arc_resolution: u32) -> Self {
self.config.arc_resolution = arc_resolution;
self
}
}
impl<T: GizmoConfigGroup> RoundedCuboidBuilder<'_, '_, '_, T> {
/// Change the radius of the edges to be `edge_radius`.
/// The default edge radius is [min axis of size] / 10.0
pub fn edge_radius(mut self, edge_radius: f32) -> Self {
self.config.corner_radius = edge_radius;
self
}
/// Change the resolution of the arcs at the edges of the cuboid.
/// The default value is 8
pub fn arc_resolution(mut self, arc_resolution: u32) -> Self {
self.config.arc_resolution = arc_resolution;
self
}
}
impl<T: GizmoConfigGroup> Drop for RoundedRectBuilder<'_, '_, '_, T> {
fn drop(&mut self) {
if !self.gizmos.enabled {
return;
}
let config = &self.config;
// Calculate inner and outer half size and ensure that the edge_radius is <= any half_length
let mut outer_half_size = self.size.abs() / 2.0;
let inner_half_size =
(outer_half_size - Vec2::splat(config.corner_radius.abs())).max(Vec2::ZERO);
let corner_radius = (outer_half_size - inner_half_size).min_element();
let mut inner_half_size = outer_half_size - Vec2::splat(corner_radius);
if config.corner_radius < 0. {
std::mem::swap(&mut outer_half_size, &mut inner_half_size);
}
// Handle cases where the rectangle collapses into simpler shapes
if outer_half_size.x * outer_half_size.y == 0. {
self.gizmos.line(
config.isometry * -outer_half_size.extend(0.),
config.isometry * outer_half_size.extend(0.),
config.color,
);
return;
}
if corner_radius == 0. {
self.gizmos.rect(config.isometry, self.size, config.color);
return;
}
let vertices = [
// top right
Vec3::new(inner_half_size.x, outer_half_size.y, 0.),
Vec3::new(inner_half_size.x, inner_half_size.y, 0.),
Vec3::new(outer_half_size.x, inner_half_size.y, 0.),
// bottom right
Vec3::new(outer_half_size.x, -inner_half_size.y, 0.),
Vec3::new(inner_half_size.x, -inner_half_size.y, 0.),
Vec3::new(inner_half_size.x, -outer_half_size.y, 0.),
// bottom left
Vec3::new(-inner_half_size.x, -outer_half_size.y, 0.),
Vec3::new(-inner_half_size.x, -inner_half_size.y, 0.),
Vec3::new(-outer_half_size.x, -inner_half_size.y, 0.),
// top left
Vec3::new(-outer_half_size.x, inner_half_size.y, 0.),
Vec3::new(-inner_half_size.x, inner_half_size.y, 0.),
Vec3::new(-inner_half_size.x, outer_half_size.y, 0.),
]
.map(|vec3| config.isometry * vec3);
for chunk in vertices.chunks_exact(3) {
self.gizmos
.short_arc_3d_between(chunk[1], chunk[0], chunk[2], config.color)
.resolution(config.arc_resolution);
}
let edges = if config.corner_radius > 0. {
[
(vertices[2], vertices[3]),
(vertices[5], vertices[6]),
(vertices[8], vertices[9]),
(vertices[11], vertices[0]),
]
} else {
[
(vertices[0], vertices[5]),
(vertices[3], vertices[8]),
(vertices[6], vertices[11]),
(vertices[9], vertices[2]),
]
};
for (start, end) in edges {
self.gizmos.line(start, end, config.color);
}
}
}
impl<T: GizmoConfigGroup> Drop for RoundedCuboidBuilder<'_, '_, '_, T> {
fn drop(&mut self) {
if !self.gizmos.enabled {
return;
}
let config = &self.config;
// Calculate inner and outer half size and ensure that the edge_radius is <= any half_length
let outer_half_size = self.size.abs() / 2.0;
let inner_half_size =
(outer_half_size - Vec3::splat(config.corner_radius.abs())).max(Vec3::ZERO);
let mut edge_radius = (outer_half_size - inner_half_size).min_element();
let inner_half_size = outer_half_size - Vec3::splat(edge_radius);
edge_radius *= config.corner_radius.signum();
// Handle cases where the rounded cuboid collapses into simpler shapes
if edge_radius == 0.0 {
let transform = Transform::from_translation(config.isometry.translation.into())
.with_rotation(config.isometry.rotation)
.with_scale(self.size);
self.gizmos.cuboid(transform, config.color);
return;
}
let rects = [
(
Vec3::X,
Vec2::new(self.size.z, self.size.y),
Quat::from_rotation_y(FRAC_PI_2),
),
(
Vec3::Y,
Vec2::new(self.size.x, self.size.z),
Quat::from_rotation_x(FRAC_PI_2),
),
(Vec3::Z, Vec2::new(self.size.x, self.size.y), Quat::IDENTITY),
];
for (position, size, rotation) in rects {
let local_position = position * inner_half_size;
self.gizmos
.rounded_rect(
config.isometry * Isometry3d::new(local_position, rotation),
size,
config.color,
)
.arc_resolution(config.arc_resolution)
.corner_radius(edge_radius);
self.gizmos
.rounded_rect(
config.isometry * Isometry3d::new(-local_position, rotation),
size,
config.color,
)
.arc_resolution(config.arc_resolution)
.corner_radius(edge_radius);
}
}
}
impl<'w, 's, T: GizmoConfigGroup> Gizmos<'w, 's, T> {
/// Draw a wireframe rectangle with rounded corners in 3D.
///
/// This should be called for each frame the rectangle needs to be rendered.
///
/// # Arguments
///
/// - `isometry` defines the translation and rotation of the rectangle.
/// - the translation specifies the center of the rectangle
/// - defines orientation of the rectangle, by default we
/// assume the rectangle is contained in a plane parallel
/// to the XY plane.
/// - `size`: defines the size of the rectangle. This refers to the 'outer size', similar to a bounding box.
/// - `color`: color of the rectangle
///
/// # Builder methods
///
/// - The corner radius can be adjusted with the `.corner_radius(...)` method.
/// - The resolution of the arcs at each corner (i.e. the level of detail) can be adjusted with the
/// `.arc_resolution(...)` method.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_math::prelude::*;
/// # use bevy_color::palettes::css::GREEN;
/// fn system(mut gizmos: Gizmos) {
/// gizmos.rounded_rect(
/// Isometry3d::IDENTITY,
/// Vec2::ONE,
/// GREEN
/// )
/// .corner_radius(0.25)
/// .arc_resolution(10);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
pub fn rounded_rect(
&mut self,
isometry: Isometry3d,
size: Vec2,
color: impl Into<Color>,
) -> RoundedRectBuilder<'_, 'w, 's, T> {
let corner_radius = size.min_element() * DEFAULT_CORNER_RADIUS;
RoundedRectBuilder {
gizmos: self,
config: RoundedBoxConfig {
isometry,
color: color.into(),
corner_radius,
arc_resolution: DEFAULT_ARC_RESOLUTION,
},
size,
}
}
/// Draw a wireframe rectangle with rounded corners in 2D.
///
/// This should be called for each frame the rectangle needs to be rendered.
///
/// # Arguments
///
/// - `isometry` defines the translation and rotation of the rectangle.
/// - the translation specifies the center of the rectangle
/// - defines orientation of the rectangle, by default we
/// assume the rectangle aligned with all axes.
/// - `size`: defines the size of the rectangle. This refers to the 'outer size', similar to a bounding box.
/// - `color`: color of the rectangle
///
/// # Builder methods
///
/// - The corner radius can be adjusted with the `.corner_radius(...)` method.
/// - The resolution of the arcs at each corner (i.e. the level of detail) can be adjusted with the
/// `.arc_resolution(...)` method.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_math::prelude::*;
/// # use bevy_color::palettes::css::GREEN;
/// fn system(mut gizmos: Gizmos) {
/// gizmos.rounded_rect_2d(
/// Isometry2d::IDENTITY,
/// Vec2::ONE,
/// GREEN
/// )
/// .corner_radius(0.25)
/// .arc_resolution(10);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
pub fn rounded_rect_2d(
&mut self,
isometry: Isometry2d,
size: Vec2,
color: impl Into<Color>,
) -> RoundedRectBuilder<'_, 'w, 's, T> {
let corner_radius = size.min_element() * DEFAULT_CORNER_RADIUS;
RoundedRectBuilder {
gizmos: self,
config: RoundedBoxConfig {
isometry: Isometry3d::new(
isometry.translation.extend(0.0),
Quat::from_rotation_z(isometry.rotation.as_radians()),
),
color: color.into(),
corner_radius,
arc_resolution: DEFAULT_ARC_RESOLUTION,
},
size,
}
}
/// Draw a wireframe cuboid with rounded corners in 3D.
///
/// This should be called for each frame the cuboid needs to be rendered.
///
/// # Arguments
///
/// - `isometry` defines the translation and rotation of the cuboid.
/// - the translation specifies the center of the cuboid
/// - defines orientation of the cuboid, by default we
/// assume the cuboid aligned with all axes.
/// - `size`: defines the size of the cuboid. This refers to the 'outer size', similar to a bounding box.
/// - `color`: color of the cuboid
///
/// # Builder methods
///
/// - The edge radius can be adjusted with the `.edge_radius(...)` method.
/// - The resolution of the arcs at each edge (i.e. the level of detail) can be adjusted with the
/// `.arc_resolution(...)` method.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_math::prelude::*;
/// # use bevy_color::palettes::css::GREEN;
/// fn system(mut gizmos: Gizmos) {
/// gizmos.rounded_cuboid(
/// Isometry3d::IDENTITY,
/// Vec3::ONE,
/// GREEN
/// )
/// .edge_radius(0.25)
/// .arc_resolution(10);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
pub fn rounded_cuboid(
&mut self,
isometry: Isometry3d,
size: Vec3,
color: impl Into<Color>,
) -> RoundedCuboidBuilder<'_, 'w, 's, T> {
let corner_radius = size.min_element() * DEFAULT_CORNER_RADIUS;
RoundedCuboidBuilder {
gizmos: self,
config: RoundedBoxConfig {
isometry,
color: color.into(),
corner_radius,
arc_resolution: DEFAULT_ARC_RESOLUTION,
},
size,
}
}
}
const DEFAULT_ARC_RESOLUTION: u32 = 8;
const DEFAULT_CORNER_RADIUS: f32 = 0.1;