mirror of
https://github.com/bevyengine/bevy
synced 2024-11-23 05:03:47 +00:00
c747cc526b
# Objective - Several examples are useful for qualitative tests of Bevy's performance - By contrast, these are less useful for learning material: they are often relatively complex and have large amounts of setup and are performance optimized. ## Solution - Move bevymark, many_sprites and many_cubes into the new stress_tests example folder - Move contributors into the games folder: unlike the remaining examples in the 2d folder, it is not focused on demonstrating a clear feature.
166 lines
6.2 KiB
Rust
166 lines
6.2 KiB
Rust
use bevy::{
|
|
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
|
|
math::{DVec2, DVec3},
|
|
prelude::*,
|
|
};
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_plugin(FrameTimeDiagnosticsPlugin::default())
|
|
.add_plugin(LogDiagnosticsPlugin::default())
|
|
.add_startup_system(setup)
|
|
.add_system(move_camera)
|
|
.add_system(print_mesh_count)
|
|
.run();
|
|
}
|
|
|
|
fn setup(
|
|
mut commands: Commands,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
) {
|
|
const WIDTH: usize = 200;
|
|
const HEIGHT: usize = 200;
|
|
let mesh = meshes.add(Mesh::from(shape::Cube { size: 1.0 }));
|
|
let material = materials.add(StandardMaterial {
|
|
base_color: Color::PINK,
|
|
..default()
|
|
});
|
|
|
|
match std::env::args().nth(1).as_deref() {
|
|
Some("sphere") => {
|
|
// NOTE: This pattern is good for testing performance of culling as it provides roughly
|
|
// the same number of visible meshes regardless of the viewing angle.
|
|
const N_POINTS: usize = WIDTH * HEIGHT * 4;
|
|
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
|
|
let radius = WIDTH as f64 * 2.5;
|
|
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
|
|
for i in 0..N_POINTS {
|
|
let spherical_polar_theta_phi =
|
|
fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
|
|
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
|
|
commands.spawn_bundle(PbrBundle {
|
|
mesh: mesh.clone_weak(),
|
|
material: material.clone_weak(),
|
|
transform: Transform::from_translation((radius * unit_sphere_p).as_vec3()),
|
|
..default()
|
|
});
|
|
}
|
|
|
|
// camera
|
|
commands.spawn_bundle(PerspectiveCameraBundle::default());
|
|
}
|
|
_ => {
|
|
// NOTE: This pattern is good for demonstrating that frustum culling is working correctly
|
|
// as the number of visible meshes rises and falls depending on the viewing angle.
|
|
for x in 0..WIDTH {
|
|
for y in 0..HEIGHT {
|
|
// introduce spaces to break any kind of moiré pattern
|
|
if x % 10 == 0 || y % 10 == 0 {
|
|
continue;
|
|
}
|
|
// cube
|
|
commands.spawn_bundle(PbrBundle {
|
|
mesh: mesh.clone_weak(),
|
|
material: material.clone_weak(),
|
|
transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
|
|
..default()
|
|
});
|
|
commands.spawn_bundle(PbrBundle {
|
|
mesh: mesh.clone_weak(),
|
|
material: material.clone_weak(),
|
|
transform: Transform::from_xyz(
|
|
(x as f32) * 2.5,
|
|
HEIGHT as f32 * 2.5,
|
|
(y as f32) * 2.5,
|
|
),
|
|
..default()
|
|
});
|
|
commands.spawn_bundle(PbrBundle {
|
|
mesh: mesh.clone_weak(),
|
|
material: material.clone_weak(),
|
|
transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
|
|
..default()
|
|
});
|
|
commands.spawn_bundle(PbrBundle {
|
|
mesh: mesh.clone_weak(),
|
|
material: material.clone_weak(),
|
|
transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
|
|
..default()
|
|
});
|
|
}
|
|
}
|
|
// camera
|
|
commands.spawn_bundle(PerspectiveCameraBundle {
|
|
transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
|
|
..default()
|
|
});
|
|
}
|
|
}
|
|
|
|
// add one cube, the only one with strong handles
|
|
// also serves as a reference point during rotation
|
|
commands.spawn_bundle(PbrBundle {
|
|
mesh,
|
|
material,
|
|
transform: Transform {
|
|
translation: Vec3::new(0.0, HEIGHT as f32 * 2.5, 0.0),
|
|
scale: Vec3::splat(5.0),
|
|
..default()
|
|
},
|
|
..default()
|
|
});
|
|
|
|
commands.spawn_bundle(DirectionalLightBundle { ..default() });
|
|
}
|
|
|
|
// NOTE: This epsilon value is apparently optimal for optimizing for the average
|
|
// nearest-neighbor distance. See:
|
|
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
|
|
// for details.
|
|
const EPSILON: f64 = 0.36;
|
|
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
|
|
DVec2::new(
|
|
2.0 * std::f64::consts::PI * (i as f64 / golden_ratio),
|
|
(1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
|
|
)
|
|
}
|
|
|
|
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
|
|
let (sin_theta, cos_theta) = p.x.sin_cos();
|
|
let (sin_phi, cos_phi) = p.y.sin_cos();
|
|
DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
|
|
}
|
|
|
|
// System for rotating the camera
|
|
fn move_camera(time: Res<Time>, mut camera_query: Query<&mut Transform, With<Camera>>) {
|
|
let mut camera_transform = camera_query.single_mut();
|
|
camera_transform.rotate(Quat::from_rotation_z(time.delta_seconds() * 0.15));
|
|
camera_transform.rotate(Quat::from_rotation_x(time.delta_seconds() * 0.15));
|
|
}
|
|
|
|
// System for printing the number of meshes on every tick of the timer
|
|
fn print_mesh_count(
|
|
time: Res<Time>,
|
|
mut timer: Local<PrintingTimer>,
|
|
sprites: Query<(&Handle<Mesh>, &ComputedVisibility)>,
|
|
) {
|
|
timer.tick(time.delta());
|
|
|
|
if timer.just_finished() {
|
|
info!(
|
|
"Meshes: {} - Visible Meshes {}",
|
|
sprites.iter().len(),
|
|
sprites.iter().filter(|(_, cv)| cv.is_visible).count(),
|
|
);
|
|
}
|
|
}
|
|
|
|
#[derive(Deref, DerefMut)]
|
|
struct PrintingTimer(Timer);
|
|
|
|
impl Default for PrintingTimer {
|
|
fn default() -> Self {
|
|
Self(Timer::from_seconds(1.0, true))
|
|
}
|
|
}
|