No description
Find a file
Gino Valente 15826d6019 bevy_reflect: Reflect enums (#4761)
# Objective

> This is a revival of #1347. Credit for the original PR should go to @Davier.

Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API.

## Solution

Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically:

```rust
#[derive(Reflect)]
enum Foo {
  A,
  B(usize),
  C { value: f32 },
}

let mut foo = Foo::B(123);
assert_eq!("B", foo.variant_name());
assert_eq!(1, foo.field_len());

let new_value = DynamicEnum::from(Foo::C { value: 1.23 });
foo.apply(&new_value);
assert_eq!(Foo::C{value: 1.23}, foo);
```

### Features

#### Derive Macro

Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection.

```rust
#[derive(Reflect)]
enum TestEnum {
  A,
  // Uncomment to ignore all of `B`
  // #[reflect(ignore)]
  B(usize),
  C {
    // Uncomment to ignore only field `foo` of `C`
    // #[reflect(ignore)]
    foo: f32,
    bar: bool,
  },
}
```

#### Dynamic Enums

Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro.

```rust
let mut value = TestEnum::A;

// Create from a concrete instance
let dyn_enum = DynamicEnum::from(TestEnum::B(123));

value.apply(&dyn_enum);
assert_eq!(TestEnum::B(123), value);

// Create a purely dynamic instance
let dyn_enum = DynamicEnum::new("TestEnum", "A", ());

value.apply(&dyn_enum);
assert_eq!(TestEnum::A, value);
```

#### Variants

An enum value is always represented as one of its variants— never the enum in its entirety.

```rust
let value = TestEnum::A;
assert_eq!("A", value.variant_name());

// Since we are using the `A` variant, we cannot also be the `B` variant
assert_ne!("B", value.variant_name());
```

All variant types are representable within the `Enum` trait: unit, struct, and tuple.

You can get the current type like:

```rust
match value.variant_type() {
  VariantType::Unit => println!("A unit variant!"),
  VariantType::Struct => println!("A struct variant!"),
  VariantType::Tuple => println!("A tuple variant!"),
}
```

> Notice that they don't contain any values representing the fields. These are purely tags.

If a variant has them, you can access the fields as well:

```rust
let mut value = TestEnum::C {
  foo: 1.23,
  bar: false
};

// Read/write specific fields
*value.field_mut("bar").unwrap() = true;

// Iterate over the entire collection of fields
for field in value.iter_fields() {
  println!("{} = {:?}", field.name(), field.value());
}
```

#### Variant Swapping

It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them.

```rust
let mut value: Box<dyn Enum> = Box::new(TestEnum::A);
value.set(Box::new(TestEnum::B(123))).unwrap();
```

#### Serialization

Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized.

> Note, like the rest of reflection-based serialization, the order of the keys in these representations is important!

##### Unit

```json
{
  "type": "my_crate::TestEnum",
  "enum": {
    "variant": "A"
  }
}
```

##### Tuple

```json
{
  "type": "my_crate::TestEnum",
  "enum": {
    "variant": "B",
    "tuple": [
      {
        "type": "usize",
        "value": 123
      }
    ]
  }
}
```

<details>
<summary>Effects on Option</summary>

This ends up making `Option` look a little ugly:

```json
{
  "type": "core::option::Option<usize>",
  "enum": {
    "variant": "Some",
    "tuple": [
      {
        "type": "usize",
        "value": 123
      }
    ]
  }
}
```


</details>

##### Struct

```json
{
  "type": "my_crate::TestEnum",
  "enum": {
    "variant": "C",
    "struct": {
      "foo": {
        "type": "f32",
        "value": 1.23
      },
      "bar": {
        "type": "bool",
        "value": false
      }
    }
  }
}
```

## Design Decisions

<details>
<summary><strong>View Section</strong></summary>

This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future.

### Variant Representation

One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though.

#### Alternatives

##### 1. Variant Traits

One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like:

```rust
pub trait Enum: Reflect {
  fn variant(&self) -> Variant;
}

pub enum Variant<'a> {
    Unit,
    Tuple(&'a dyn TupleVariant),
    Struct(&'a dyn StructVariant),
}

pub trait TupleVariant {
  fn field_len(&self) -> usize;
  // ...
}
```

And then do things like:

```rust
fn get_tuple_len(foo: &dyn Enum) -> usize {
  match foo.variant() {
    Variant::Tuple(tuple) => tuple.field_len(),
    _ => panic!("not a tuple variant!")
  }
}
```

The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun:

```rust
let foo: Option<i32> = None;
let my_enum = Box::new(foo) as Box<dyn TupleVariant>;
```

Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants.

##### 2. Variant Structs

To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](71d27ab3c6) due to concerns about allocations.

 Each variant struct would probably look something like:

```rust
pub trait Enum: Reflect {
  fn variant_mut(&self) -> VariantMut;
}

pub enum VariantMut<'a> {
    Unit,
    Tuple(TupleVariantMut),
    Struct(StructVariantMut),
}

struct StructVariantMut<'a> {
  fields: Vec<&'a mut dyn Reflect>,
  field_indices: HashMap<Cow<'static, str>, usize>
}
```

This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough.

##### 3. Generated Structs

The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant.

Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC.

In order to work properly, the enum had to be transmuted to the generated struct:

```rust
fn variant(&self) -> crate::EnumVariant<'_> {
  match self {
    Foo::Bar {value: i32} => {
      let wrapper_ref = unsafe { 
        std::mem::transmute::<&Self, &FooBarWrapper>(self) 
      };
      crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct)
    }
  }
}
```

This works because `FooBarWrapper` is defined as `repr(transparent)`.

Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because:

* To reduce generated code (which would hopefully speed up compile times)
* To avoid cluttering the code with generated structs not visible to the user
* To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems)
* To avoid additional unsafe blocks
* My own misunderstanding of @Davier's code

That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation.

#### Benefits of All-in-One

As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.).

The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't).

This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter):

```rust
let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123};
// We know it's the `Bar` variant
let field = dyn_enum.field("value").unwrap();
```

Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes.

 Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums.

</details>

---

## Changelog

### Added

* Added `Enum` trait
* Added `Enum` impl to `Reflect` derive macro
* Added `DynamicEnum` struct
  * Added `DynamicVariant`
* Added `EnumInfo`
  * Added `VariantInfo`
    * Added `StructVariantInfo`
    * Added `TupleVariantInfo`
    * Added `UnitVariantInfo`
* Added serializtion/deserialization support for enums
  * Added `EnumSerializer`

* Added `VariantType`
* Added `VariantFieldIter`
* Added `VariantField`
* Added `enum_partial_eq(...)`
* Added `enum_hash(...)`

### Changed

* `Option<T>` now implements `Enum`
* `bevy_window` now depends on `bevy_reflect`
  * Implemented `Reflect` and `FromReflect` for `WindowId`
* Derive `FromReflect` on `PerspectiveProjection`
* Derive `FromReflect` on `OrthographicProjection`
* Derive `FromReflect` on `WindowOrigin`
* Derive `FromReflect` on `ScalingMode`
* Derive `FromReflect` on `DepthCalculation`


## Migration Guide

* Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]`
* Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums. 

---

Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated!

Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
2022-08-02 22:14:41 +00:00
.cargo Change path to zld on MacOS fast build example (#4778) 2022-05-17 16:00:17 +00:00
.github remove disable-weak-memory-emulation (#5469) 2022-07-27 16:51:03 +00:00
assets Support array / cubemap / cubemap array textures in KTX2 (#5325) 2022-07-30 07:02:58 +00:00
benches Simplify design for *Labels (#4957) 2022-07-14 18:23:01 +00:00
crates bevy_reflect: Reflect enums (#4761) 2022-08-02 22:14:41 +00:00
docs Lighter no default features (#5447) 2022-07-25 15:48:14 +00:00
errors add a more helpful error to help debug panicking command on despawned entity (#5198) 2022-07-05 18:44:54 +00:00
examples bevy_reflect: Reflect enums (#4761) 2022-08-02 22:14:41 +00:00
src Add missing closing ticks for inline examples and some cleanup (#3573) 2022-01-07 09:25:12 +00:00
tests Update codebase to use IntoIterator where possible. (#5269) 2022-07-11 15:28:50 +00:00
tools Release 0.8.0 (#5490) 2022-07-30 14:07:30 +00:00
.gitattributes Enforce linux-style line endings for .rs and .toml (#3197) 2021-11-26 21:05:35 +00:00
.gitignore add .cargo/config.toml to .gitignore 2020-12-12 17:17:35 -08:00
Cargo.toml Release 0.8.0 (#5490) 2022-07-30 14:07:30 +00:00
CHANGELOG.md Update changelog for 0.8.0 (#5494) 2022-07-30 15:03:21 +00:00
clippy.toml Enable the doc_markdown clippy lint (#3457) 2022-01-09 23:20:13 +00:00
CODE_OF_CONDUCT.md Update CODE_OF_CONDUCT.md 2020-08-19 20:25:58 +01:00
CONTRIBUTING.md Note that changes to licensing are controversial (#4975) 2022-07-20 17:05:43 +00:00
CREDITS.md Add the license for the FiraMono font (#3589) 2022-05-06 19:29:43 +00:00
deny.toml allow unicode license (#5337) 2022-07-17 23:14:38 +00:00
LICENSE-APACHE Let the project page support GitHub's new ability to display open source licenses (#4966) 2022-06-08 17:55:57 +00:00
LICENSE-MIT Let the project page support GitHub's new ability to display open source licenses (#4966) 2022-06-08 17:55:57 +00:00
README.md Note that changes to licensing are controversial (#4975) 2022-07-20 17:05:43 +00:00
rustfmt.toml Cargo fmt with unstable features (#1903) 2021-04-21 23:19:34 +00:00

Bevy

Crates.io MIT/Apache 2.0 Crates.io Rust iOS cron CI Discord

What is Bevy?

Bevy is a refreshingly simple data-driven game engine built in Rust. It is free and open-source forever!

WARNING

Bevy is still in the very early stages of development. APIs can and will change (now is the time to make suggestions!). Important features are missing. Documentation is sparse. Please don't build any serious projects in Bevy unless you are prepared to be broken by API changes constantly.

MSRV: Bevy relies heavily on improvements in the Rust language and compiler. As a result, the Minimum Supported Rust Version (MSRV) is "the latest stable release" of Rust.

Design Goals

  • Capable: Offer a complete 2D and 3D feature set
  • Simple: Easy for newbies to pick up, but infinitely flexible for power users
  • Data Focused: Data-oriented architecture using the Entity Component System paradigm
  • Modular: Use only what you need. Replace what you don't like
  • Fast: App logic should run quickly, and when possible, in parallel
  • Productive: Changes should compile quickly ... waiting isn't fun

About

  • Features: A quick overview of Bevy's features.
  • News: A development blog that covers our progress, plans and shiny new features.

Docs

  • The Bevy Book: Bevy's official documentation. The best place to start learning Bevy.
  • Bevy Rust API Docs: Bevy's Rust API docs, which are automatically generated from the doc comments in this repo.
  • Official Examples: Bevy's dedicated, runnable examples, which are great for digging into specific concepts.
  • Community-Made Learning Resources: More tutorials, documentation, and examples made by the Bevy community.

Community

Before contributing or participating in discussions with the community, you should familiarize yourself with our Code of Conduct.

  • Discord: Bevy's official discord server.
  • Reddit: Bevy's official subreddit.
  • GitHub Discussions: The best place for questions about Bevy, answered right here!
  • Bevy Assets: A collection of awesome Bevy projects, tools, plugins and learning materials.

If you'd like to help build Bevy, check out the Contributor's Guide. For simple problems, feel free to open an issue or PR and tackle it yourself!

For more complex architecture decisions and experimental mad science, please open an RFC (Request For Comments) so we can brainstorm together effectively!

Getting Started

We recommend checking out The Bevy Book for a full tutorial.

Follow the Setup guide to ensure your development environment is set up correctly. Once set up, you can quickly try out the examples by cloning this repo and running the following commands:

# Switch to the correct version (latest release, default is main development branch)
git checkout latest
# Runs the "breakout" example
cargo run --example breakout

To draw a window with standard functionality enabled, use:

use bevy::prelude::*;

fn main(){
  App::new()
    .add_plugins(DefaultPlugins)
    .run();
}

Fast Compiles

Bevy can be built just fine using default configuration on stable Rust. However for really fast iterative compiles, you should enable the "fast compiles" setup by following the instructions here.

Libraries Used

Bevy is only possible because of the hard work put into these foundational technologies:

  • wgpu: modern / low-level / cross-platform graphics library inspired by Vulkan
  • glam-rs: a simple and fast 3D math library for games and graphics
  • winit: cross-platform window creation and management in Rust

Bevy Cargo Features

This list outlines the different cargo features supported by Bevy. These allow you to customize the Bevy feature set for your use-case.

Third Party Plugins

Plugins are very welcome to extend Bevy's features. Guidelines are available to help integration and usage.

Thanks and Alternatives

Additionally, we would like to thank the Amethyst, macroquad, coffee, ggez, Fyrox, and Piston projects for providing solid examples of game engine development in Rust. If you are looking for a Rust game engine, it is worth considering all of your options. Each engine has different design goals, and some will likely resonate with you more than others.

License

Bevy is free, open source and permissively licensed! Except where noted (below and/or in individual files), all code in this repository is dual-licensed under either:

at your option. This means you can select the license you prefer! This dual-licensing approach is the de-facto standard in the Rust ecosystem and there are very good reasons to include both.

Some of the engine's code carries additional copyright notices and license terms due to their external origins. These are generally BSD-like, but exact details vary by crate: If the README of a crate contains a 'License' header (or similar), the additional copyright notices and license terms applicable to that crate will be listed. The above licensing requirement still applies to contributions to those crates, and sections of those crates will carry those license terms. The license field of each crate will also reflect this. For example, bevy_mikktspace has code under the Zlib license (as well as a copyright notice when choosing the MIT license).

The assets included in this repository (for our examples) typically fall under different open licenses. These will not be included in your game (unless copied in by you), and they are not distributed in the published bevy crates. See CREDITS.md for the details of the licenses of those files.

Your contributions

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.