bevy/crates/bevy_render/src/texture/image.rs
Miguel Medina Ballesteros e64c8f8b7a
Parse missing mime types (#12028)
# Objective

This PR adds some missing mime types to the
`ImageFormat::from_mime_type` method. As discussed [in this comment on
the Discord Bevy
community](https://discord.com/channels/691052431525675048/691052431974465548/1209904290227949729):

> It's strange that Bevy supports parsing `ImageFormat::WebP` from a
.webp str extension in the method below, but not from the mime type.
> 
> In comparison, the image crate does parse it:
https://github.com/image-rs/image/blob/master/src/image.rs#L170

# Solution

For each of the missing mime types, I added them based on the
`ImageFormat::from_mime_type` of the image crate:
https://github.com/image-rs/image/blob/master/src/image.rs#L209, except
for `ImageFormat::Basis` and `ImageFormat::Ktx2` which are not present
in the image crate, and I ignore if they have a mime type or not*

\* apparently nowadays there is an official mime type: `image/ktx2`
https://www.iana.org/assignments/media-types/image/ktx2

Any feedback is welcome! I thought of refactoring a bit more and
delegating the mime type parsing to the image crate (and possibly the
same for extensions), let me know if that's desired 🙂
2024-02-21 21:56:59 +00:00

970 lines
35 KiB
Rust

#[cfg(feature = "basis-universal")]
use super::basis::*;
#[cfg(feature = "dds")]
use super::dds::*;
#[cfg(feature = "ktx2")]
use super::ktx2::*;
use crate::{
render_asset::{PrepareAssetError, RenderAsset, RenderAssetUsages},
render_resource::{Sampler, Texture, TextureView},
renderer::{RenderDevice, RenderQueue},
texture::BevyDefault,
};
use bevy_asset::Asset;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::system::{lifetimeless::SRes, Resource, SystemParamItem};
use bevy_math::{AspectRatio, UVec2, Vec2};
use bevy_reflect::Reflect;
use serde::{Deserialize, Serialize};
use std::hash::Hash;
use thiserror::Error;
use wgpu::{Extent3d, TextureDimension, TextureFormat, TextureViewDescriptor};
pub const TEXTURE_ASSET_INDEX: u64 = 0;
pub const SAMPLER_ASSET_INDEX: u64 = 1;
#[derive(Debug, Serialize, Deserialize, Copy, Clone)]
pub enum ImageFormat {
Avif,
Basis,
Bmp,
Dds,
Farbfeld,
Gif,
OpenExr,
Hdr,
Ico,
Jpeg,
Ktx2,
Png,
Pnm,
Tga,
Tiff,
WebP,
}
impl ImageFormat {
pub fn from_mime_type(mime_type: &str) -> Option<Self> {
Some(match mime_type.to_ascii_lowercase().as_str() {
"image/avif" => ImageFormat::Avif,
"image/bmp" | "image/x-bmp" => ImageFormat::Bmp,
"image/vnd-ms.dds" => ImageFormat::Dds,
"image/vnd.radiance" => ImageFormat::Hdr,
"image/gif" => ImageFormat::Gif,
"image/x-icon" => ImageFormat::Ico,
"image/jpeg" => ImageFormat::Jpeg,
"image/ktx2" => ImageFormat::Ktx2,
"image/png" => ImageFormat::Png,
"image/x-exr" => ImageFormat::OpenExr,
"image/x-portable-bitmap"
| "image/x-portable-graymap"
| "image/x-portable-pixmap"
| "image/x-portable-anymap" => ImageFormat::Pnm,
"image/x-targa" | "image/x-tga" => ImageFormat::Tga,
"image/tiff" => ImageFormat::Tiff,
"image/webp" => ImageFormat::WebP,
_ => return None,
})
}
pub fn from_extension(extension: &str) -> Option<Self> {
Some(match extension.to_ascii_lowercase().as_str() {
"avif" => ImageFormat::Avif,
"basis" => ImageFormat::Basis,
"bmp" => ImageFormat::Bmp,
"dds" => ImageFormat::Dds,
"ff" | "farbfeld" => ImageFormat::Farbfeld,
"gif" => ImageFormat::Gif,
"exr" => ImageFormat::OpenExr,
"hdr" => ImageFormat::Hdr,
"ico" => ImageFormat::Ico,
"jpg" | "jpeg" => ImageFormat::Jpeg,
"ktx2" => ImageFormat::Ktx2,
"pbm" | "pam" | "ppm" | "pgm" => ImageFormat::Pnm,
"png" => ImageFormat::Png,
"tga" => ImageFormat::Tga,
"tif" | "tiff" => ImageFormat::Tiff,
"webp" => ImageFormat::WebP,
_ => return None,
})
}
pub fn as_image_crate_format(&self) -> Option<image::ImageFormat> {
Some(match self {
ImageFormat::Avif => image::ImageFormat::Avif,
ImageFormat::Bmp => image::ImageFormat::Bmp,
ImageFormat::Dds => image::ImageFormat::Dds,
ImageFormat::Farbfeld => image::ImageFormat::Farbfeld,
ImageFormat::Gif => image::ImageFormat::Gif,
ImageFormat::OpenExr => image::ImageFormat::OpenExr,
ImageFormat::Hdr => image::ImageFormat::Hdr,
ImageFormat::Ico => image::ImageFormat::Ico,
ImageFormat::Jpeg => image::ImageFormat::Jpeg,
ImageFormat::Png => image::ImageFormat::Png,
ImageFormat::Pnm => image::ImageFormat::Pnm,
ImageFormat::Tga => image::ImageFormat::Tga,
ImageFormat::Tiff => image::ImageFormat::Tiff,
ImageFormat::WebP => image::ImageFormat::WebP,
ImageFormat::Basis | ImageFormat::Ktx2 => return None,
})
}
}
#[derive(Asset, Reflect, Debug, Clone)]
#[reflect_value]
pub struct Image {
pub data: Vec<u8>,
// TODO: this nesting makes accessing Image metadata verbose. Either flatten out descriptor or add accessors
pub texture_descriptor: wgpu::TextureDescriptor<'static>,
/// The [`ImageSampler`] to use during rendering.
pub sampler: ImageSampler,
pub texture_view_descriptor: Option<TextureViewDescriptor<'static>>,
pub asset_usage: RenderAssetUsages,
}
/// Used in [`Image`], this determines what image sampler to use when rendering. The default setting,
/// [`ImageSampler::Default`], will read the sampler from the [`ImagePlugin`](super::ImagePlugin) at setup.
/// Setting this to [`ImageSampler::Descriptor`] will override the global default descriptor for this [`Image`].
#[derive(Debug, Default, Clone, Serialize, Deserialize)]
pub enum ImageSampler {
/// Default image sampler, derived from the [`ImagePlugin`](super::ImagePlugin) setup.
#[default]
Default,
/// Custom sampler for this image which will override global default.
Descriptor(ImageSamplerDescriptor),
}
impl ImageSampler {
/// Returns an image sampler with [`ImageFilterMode::Linear`] min and mag filters
#[inline]
pub fn linear() -> ImageSampler {
ImageSampler::Descriptor(ImageSamplerDescriptor::linear())
}
/// Returns an image sampler with [`ImageFilterMode::Nearest`] min and mag filters
#[inline]
pub fn nearest() -> ImageSampler {
ImageSampler::Descriptor(ImageSamplerDescriptor::nearest())
}
}
/// A rendering resource for the default image sampler which is set during renderer
/// initialization.
///
/// The [`ImagePlugin`](super::ImagePlugin) can be set during app initialization to change the default
/// image sampler.
#[derive(Resource, Debug, Clone, Deref, DerefMut)]
pub struct DefaultImageSampler(pub(crate) Sampler);
/// How edges should be handled in texture addressing.
///
/// See [`ImageSamplerDescriptor`] for information how to configure this.
///
/// This type mirrors [`wgpu::AddressMode`].
#[derive(Clone, Copy, Debug, Default, Serialize, Deserialize)]
pub enum ImageAddressMode {
/// Clamp the value to the edge of the texture.
///
/// -0.25 -> 0.0
/// 1.25 -> 1.0
#[default]
ClampToEdge,
/// Repeat the texture in a tiling fashion.
///
/// -0.25 -> 0.75
/// 1.25 -> 0.25
Repeat,
/// Repeat the texture, mirroring it every repeat.
///
/// -0.25 -> 0.25
/// 1.25 -> 0.75
MirrorRepeat,
/// Clamp the value to the border of the texture
/// Requires the wgpu feature [`wgpu::Features::ADDRESS_MODE_CLAMP_TO_BORDER`].
///
/// -0.25 -> border
/// 1.25 -> border
ClampToBorder,
}
/// Texel mixing mode when sampling between texels.
///
/// This type mirrors [`wgpu::FilterMode`].
#[derive(Clone, Copy, Debug, Default, Serialize, Deserialize)]
pub enum ImageFilterMode {
/// Nearest neighbor sampling.
///
/// This creates a pixelated effect when used as a mag filter.
#[default]
Nearest,
/// Linear Interpolation.
///
/// This makes textures smooth but blurry when used as a mag filter.
Linear,
}
/// Comparison function used for depth and stencil operations.
///
/// This type mirrors [`wgpu::CompareFunction`].
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub enum ImageCompareFunction {
/// Function never passes
Never,
/// Function passes if new value less than existing value
Less,
/// Function passes if new value is equal to existing value. When using
/// this compare function, make sure to mark your Vertex Shader's `@builtin(position)`
/// output as `@invariant` to prevent artifacting.
Equal,
/// Function passes if new value is less than or equal to existing value
LessEqual,
/// Function passes if new value is greater than existing value
Greater,
/// Function passes if new value is not equal to existing value. When using
/// this compare function, make sure to mark your Vertex Shader's `@builtin(position)`
/// output as `@invariant` to prevent artifacting.
NotEqual,
/// Function passes if new value is greater than or equal to existing value
GreaterEqual,
/// Function always passes
Always,
}
/// Color variation to use when the sampler addressing mode is [`ImageAddressMode::ClampToBorder`].
///
/// This type mirrors [`wgpu::SamplerBorderColor`].
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub enum ImageSamplerBorderColor {
/// RGBA color `[0, 0, 0, 0]`.
TransparentBlack,
/// RGBA color `[0, 0, 0, 1]`.
OpaqueBlack,
/// RGBA color `[1, 1, 1, 1]`.
OpaqueWhite,
/// On the Metal wgpu backend, this is equivalent to [`Self::TransparentBlack`] for
/// textures that have an alpha component, and equivalent to [`Self::OpaqueBlack`]
/// for textures that do not have an alpha component. On other backends,
/// this is equivalent to [`Self::TransparentBlack`]. Requires
/// [`wgpu::Features::ADDRESS_MODE_CLAMP_TO_ZERO`]. Not supported on the web.
Zero,
}
/// Indicates to an [`ImageLoader`](super::ImageLoader) how an [`Image`] should be sampled.
/// As this type is part of the [`ImageLoaderSettings`](super::ImageLoaderSettings),
/// it will be serialized to an image asset `.meta` file which might require a migration in case of
/// a breaking change.
///
/// This types mirrors [`wgpu::SamplerDescriptor`], but that might change in future versions.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct ImageSamplerDescriptor {
pub label: Option<String>,
/// How to deal with out of bounds accesses in the u (i.e. x) direction.
pub address_mode_u: ImageAddressMode,
/// How to deal with out of bounds accesses in the v (i.e. y) direction.
pub address_mode_v: ImageAddressMode,
/// How to deal with out of bounds accesses in the w (i.e. z) direction.
pub address_mode_w: ImageAddressMode,
/// How to filter the texture when it needs to be magnified (made larger).
pub mag_filter: ImageFilterMode,
/// How to filter the texture when it needs to be minified (made smaller).
pub min_filter: ImageFilterMode,
/// How to filter between mip map levels
pub mipmap_filter: ImageFilterMode,
/// Minimum level of detail (i.e. mip level) to use.
pub lod_min_clamp: f32,
/// Maximum level of detail (i.e. mip level) to use.
pub lod_max_clamp: f32,
/// If this is enabled, this is a comparison sampler using the given comparison function.
pub compare: Option<ImageCompareFunction>,
/// Must be at least 1. If this is not 1, all filter modes must be linear.
pub anisotropy_clamp: u16,
/// Border color to use when `address_mode`` is [`ImageAddressMode::ClampToBorder`].
pub border_color: Option<ImageSamplerBorderColor>,
}
impl Default for ImageSamplerDescriptor {
fn default() -> Self {
Self {
address_mode_u: Default::default(),
address_mode_v: Default::default(),
address_mode_w: Default::default(),
mag_filter: Default::default(),
min_filter: Default::default(),
mipmap_filter: Default::default(),
lod_min_clamp: 0.0,
lod_max_clamp: 32.0,
compare: None,
anisotropy_clamp: 1,
border_color: None,
label: None,
}
}
}
impl ImageSamplerDescriptor {
/// Returns a sampler descriptor with [`Linear`](crate::render_resource::FilterMode::Linear) min and mag filters
#[inline]
pub fn linear() -> ImageSamplerDescriptor {
ImageSamplerDescriptor {
mag_filter: ImageFilterMode::Linear,
min_filter: ImageFilterMode::Linear,
mipmap_filter: ImageFilterMode::Linear,
..Default::default()
}
}
/// Returns a sampler descriptor with [`Nearest`](crate::render_resource::FilterMode::Nearest) min and mag filters
#[inline]
pub fn nearest() -> ImageSamplerDescriptor {
ImageSamplerDescriptor {
mag_filter: ImageFilterMode::Nearest,
min_filter: ImageFilterMode::Nearest,
mipmap_filter: ImageFilterMode::Nearest,
..Default::default()
}
}
pub fn as_wgpu(&self) -> wgpu::SamplerDescriptor {
wgpu::SamplerDescriptor {
label: self.label.as_deref(),
address_mode_u: self.address_mode_u.into(),
address_mode_v: self.address_mode_v.into(),
address_mode_w: self.address_mode_w.into(),
mag_filter: self.mag_filter.into(),
min_filter: self.min_filter.into(),
mipmap_filter: self.mipmap_filter.into(),
lod_min_clamp: self.lod_min_clamp,
lod_max_clamp: self.lod_max_clamp,
compare: self.compare.map(Into::into),
anisotropy_clamp: self.anisotropy_clamp,
border_color: self.border_color.map(Into::into),
}
}
}
impl From<ImageAddressMode> for wgpu::AddressMode {
fn from(value: ImageAddressMode) -> Self {
match value {
ImageAddressMode::ClampToEdge => wgpu::AddressMode::ClampToEdge,
ImageAddressMode::Repeat => wgpu::AddressMode::Repeat,
ImageAddressMode::MirrorRepeat => wgpu::AddressMode::MirrorRepeat,
ImageAddressMode::ClampToBorder => wgpu::AddressMode::ClampToBorder,
}
}
}
impl From<ImageFilterMode> for wgpu::FilterMode {
fn from(value: ImageFilterMode) -> Self {
match value {
ImageFilterMode::Nearest => wgpu::FilterMode::Nearest,
ImageFilterMode::Linear => wgpu::FilterMode::Linear,
}
}
}
impl From<ImageCompareFunction> for wgpu::CompareFunction {
fn from(value: ImageCompareFunction) -> Self {
match value {
ImageCompareFunction::Never => wgpu::CompareFunction::Never,
ImageCompareFunction::Less => wgpu::CompareFunction::Less,
ImageCompareFunction::Equal => wgpu::CompareFunction::Equal,
ImageCompareFunction::LessEqual => wgpu::CompareFunction::LessEqual,
ImageCompareFunction::Greater => wgpu::CompareFunction::Greater,
ImageCompareFunction::NotEqual => wgpu::CompareFunction::NotEqual,
ImageCompareFunction::GreaterEqual => wgpu::CompareFunction::GreaterEqual,
ImageCompareFunction::Always => wgpu::CompareFunction::Always,
}
}
}
impl From<ImageSamplerBorderColor> for wgpu::SamplerBorderColor {
fn from(value: ImageSamplerBorderColor) -> Self {
match value {
ImageSamplerBorderColor::TransparentBlack => wgpu::SamplerBorderColor::TransparentBlack,
ImageSamplerBorderColor::OpaqueBlack => wgpu::SamplerBorderColor::OpaqueBlack,
ImageSamplerBorderColor::OpaqueWhite => wgpu::SamplerBorderColor::OpaqueWhite,
ImageSamplerBorderColor::Zero => wgpu::SamplerBorderColor::Zero,
}
}
}
impl From<wgpu::AddressMode> for ImageAddressMode {
fn from(value: wgpu::AddressMode) -> Self {
match value {
wgpu::AddressMode::ClampToEdge => ImageAddressMode::ClampToEdge,
wgpu::AddressMode::Repeat => ImageAddressMode::Repeat,
wgpu::AddressMode::MirrorRepeat => ImageAddressMode::MirrorRepeat,
wgpu::AddressMode::ClampToBorder => ImageAddressMode::ClampToBorder,
}
}
}
impl From<wgpu::FilterMode> for ImageFilterMode {
fn from(value: wgpu::FilterMode) -> Self {
match value {
wgpu::FilterMode::Nearest => ImageFilterMode::Nearest,
wgpu::FilterMode::Linear => ImageFilterMode::Linear,
}
}
}
impl From<wgpu::CompareFunction> for ImageCompareFunction {
fn from(value: wgpu::CompareFunction) -> Self {
match value {
wgpu::CompareFunction::Never => ImageCompareFunction::Never,
wgpu::CompareFunction::Less => ImageCompareFunction::Less,
wgpu::CompareFunction::Equal => ImageCompareFunction::Equal,
wgpu::CompareFunction::LessEqual => ImageCompareFunction::LessEqual,
wgpu::CompareFunction::Greater => ImageCompareFunction::Greater,
wgpu::CompareFunction::NotEqual => ImageCompareFunction::NotEqual,
wgpu::CompareFunction::GreaterEqual => ImageCompareFunction::GreaterEqual,
wgpu::CompareFunction::Always => ImageCompareFunction::Always,
}
}
}
impl From<wgpu::SamplerBorderColor> for ImageSamplerBorderColor {
fn from(value: wgpu::SamplerBorderColor) -> Self {
match value {
wgpu::SamplerBorderColor::TransparentBlack => ImageSamplerBorderColor::TransparentBlack,
wgpu::SamplerBorderColor::OpaqueBlack => ImageSamplerBorderColor::OpaqueBlack,
wgpu::SamplerBorderColor::OpaqueWhite => ImageSamplerBorderColor::OpaqueWhite,
wgpu::SamplerBorderColor::Zero => ImageSamplerBorderColor::Zero,
}
}
}
impl<'a> From<wgpu::SamplerDescriptor<'a>> for ImageSamplerDescriptor {
fn from(value: wgpu::SamplerDescriptor) -> Self {
ImageSamplerDescriptor {
label: value.label.map(|l| l.to_string()),
address_mode_u: value.address_mode_u.into(),
address_mode_v: value.address_mode_v.into(),
address_mode_w: value.address_mode_w.into(),
mag_filter: value.mag_filter.into(),
min_filter: value.min_filter.into(),
mipmap_filter: value.mipmap_filter.into(),
lod_min_clamp: value.lod_min_clamp,
lod_max_clamp: value.lod_max_clamp,
compare: value.compare.map(Into::into),
anisotropy_clamp: value.anisotropy_clamp,
border_color: value.border_color.map(Into::into),
}
}
}
impl Default for Image {
/// default is a 1x1x1 all '1.0' texture
fn default() -> Self {
let format = TextureFormat::bevy_default();
let data = vec![255; format.pixel_size()];
Image {
data,
texture_descriptor: wgpu::TextureDescriptor {
size: Extent3d {
width: 1,
height: 1,
depth_or_array_layers: 1,
},
format,
dimension: TextureDimension::D2,
label: None,
mip_level_count: 1,
sample_count: 1,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
view_formats: &[],
},
sampler: ImageSampler::Default,
texture_view_descriptor: None,
asset_usage: RenderAssetUsages::default(),
}
}
}
impl Image {
/// Creates a new image from raw binary data and the corresponding metadata.
///
/// # Panics
/// Panics if the length of the `data`, volume of the `size` and the size of the `format`
/// do not match.
pub fn new(
size: Extent3d,
dimension: TextureDimension,
data: Vec<u8>,
format: TextureFormat,
asset_usage: RenderAssetUsages,
) -> Self {
debug_assert_eq!(
size.volume() * format.pixel_size(),
data.len(),
"Pixel data, size and format have to match",
);
let mut image = Self {
data,
..Default::default()
};
image.texture_descriptor.dimension = dimension;
image.texture_descriptor.size = size;
image.texture_descriptor.format = format;
image.asset_usage = asset_usage;
image
}
/// Creates a new image from raw binary data and the corresponding metadata, by filling
/// the image data with the `pixel` data repeated multiple times.
///
/// # Panics
/// Panics if the size of the `format` is not a multiple of the length of the `pixel` data.
pub fn new_fill(
size: Extent3d,
dimension: TextureDimension,
pixel: &[u8],
format: TextureFormat,
asset_usage: RenderAssetUsages,
) -> Self {
let mut value = Image::default();
value.texture_descriptor.format = format;
value.texture_descriptor.dimension = dimension;
value.asset_usage = asset_usage;
value.resize(size);
debug_assert_eq!(
pixel.len() % format.pixel_size(),
0,
"Must not have incomplete pixel data."
);
debug_assert!(
pixel.len() <= value.data.len(),
"Fill data must fit within pixel buffer."
);
for current_pixel in value.data.chunks_exact_mut(pixel.len()) {
current_pixel.copy_from_slice(pixel);
}
value
}
/// Returns the width of a 2D image.
#[inline]
pub fn width(&self) -> u32 {
self.texture_descriptor.size.width
}
/// Returns the height of a 2D image.
#[inline]
pub fn height(&self) -> u32 {
self.texture_descriptor.size.height
}
/// Returns the aspect ratio (width / height) of a 2D image.
#[inline]
pub fn aspect_ratio(&self) -> AspectRatio {
AspectRatio::from_pixels(self.width(), self.height())
}
/// Returns the size of a 2D image as f32.
#[inline]
pub fn size_f32(&self) -> Vec2 {
Vec2::new(self.width() as f32, self.height() as f32)
}
/// Returns the size of a 2D image.
#[inline]
pub fn size(&self) -> UVec2 {
UVec2::new(self.width(), self.height())
}
/// Resizes the image to the new size, by removing information or appending 0 to the `data`.
/// Does not properly resize the contents of the image, but only its internal `data` buffer.
pub fn resize(&mut self, size: Extent3d) {
self.texture_descriptor.size = size;
self.data.resize(
size.volume() * self.texture_descriptor.format.pixel_size(),
0,
);
}
/// Changes the `size`, asserting that the total number of data elements (pixels) remains the
/// same.
///
/// # Panics
/// Panics if the `new_size` does not have the same volume as to old one.
pub fn reinterpret_size(&mut self, new_size: Extent3d) {
assert_eq!(
new_size.volume(),
self.texture_descriptor.size.volume(),
"Incompatible sizes: old = {:?} new = {:?}",
self.texture_descriptor.size,
new_size
);
self.texture_descriptor.size = new_size;
}
/// Takes a 2D image containing vertically stacked images of the same size, and reinterprets
/// it as a 2D array texture, where each of the stacked images becomes one layer of the
/// array. This is primarily for use with the `texture2DArray` shader uniform type.
///
/// # Panics
/// Panics if the texture is not 2D, has more than one layers or is not evenly dividable into
/// the `layers`.
pub fn reinterpret_stacked_2d_as_array(&mut self, layers: u32) {
// Must be a stacked image, and the height must be divisible by layers.
assert_eq!(self.texture_descriptor.dimension, TextureDimension::D2);
assert_eq!(self.texture_descriptor.size.depth_or_array_layers, 1);
assert_eq!(self.height() % layers, 0);
self.reinterpret_size(Extent3d {
width: self.width(),
height: self.height() / layers,
depth_or_array_layers: layers,
});
}
/// Convert a texture from a format to another. Only a few formats are
/// supported as input and output:
/// - `TextureFormat::R8Unorm`
/// - `TextureFormat::Rg8Unorm`
/// - `TextureFormat::Rgba8UnormSrgb`
///
/// To get [`Image`] as a [`image::DynamicImage`] see:
/// [`Image::try_into_dynamic`].
pub fn convert(&self, new_format: TextureFormat) -> Option<Self> {
self.clone()
.try_into_dynamic()
.ok()
.and_then(|img| match new_format {
TextureFormat::R8Unorm => {
Some((image::DynamicImage::ImageLuma8(img.into_luma8()), false))
}
TextureFormat::Rg8Unorm => Some((
image::DynamicImage::ImageLumaA8(img.into_luma_alpha8()),
false,
)),
TextureFormat::Rgba8UnormSrgb => {
Some((image::DynamicImage::ImageRgba8(img.into_rgba8()), true))
}
_ => None,
})
.map(|(dyn_img, is_srgb)| Self::from_dynamic(dyn_img, is_srgb, self.asset_usage))
}
/// Load a bytes buffer in a [`Image`], according to type `image_type`, using the `image`
/// crate
pub fn from_buffer(
#[cfg(all(debug_assertions, feature = "dds"))] name: String,
buffer: &[u8],
image_type: ImageType,
#[allow(unused_variables)] supported_compressed_formats: CompressedImageFormats,
is_srgb: bool,
image_sampler: ImageSampler,
asset_usage: RenderAssetUsages,
) -> Result<Image, TextureError> {
let format = image_type.to_image_format()?;
// Load the image in the expected format.
// Some formats like PNG allow for R or RG textures too, so the texture
// format needs to be determined. For RGB textures an alpha channel
// needs to be added, so the image data needs to be converted in those
// cases.
let mut image = match format {
#[cfg(feature = "basis-universal")]
ImageFormat::Basis => {
basis_buffer_to_image(buffer, supported_compressed_formats, is_srgb)?
}
#[cfg(feature = "dds")]
ImageFormat::Dds => dds_buffer_to_image(
#[cfg(debug_assertions)]
name,
buffer,
supported_compressed_formats,
is_srgb,
)?,
#[cfg(feature = "ktx2")]
ImageFormat::Ktx2 => {
ktx2_buffer_to_image(buffer, supported_compressed_formats, is_srgb)?
}
_ => {
let image_crate_format = format
.as_image_crate_format()
.ok_or_else(|| TextureError::UnsupportedTextureFormat(format!("{format:?}")))?;
let mut reader = image::io::Reader::new(std::io::Cursor::new(buffer));
reader.set_format(image_crate_format);
reader.no_limits();
let dyn_img = reader.decode()?;
Self::from_dynamic(dyn_img, is_srgb, asset_usage)
}
};
image.sampler = image_sampler;
Ok(image)
}
/// Whether the texture format is compressed or uncompressed
pub fn is_compressed(&self) -> bool {
let format_description = self.texture_descriptor.format;
format_description
.required_features()
.contains(wgpu::Features::TEXTURE_COMPRESSION_ASTC)
|| format_description
.required_features()
.contains(wgpu::Features::TEXTURE_COMPRESSION_BC)
|| format_description
.required_features()
.contains(wgpu::Features::TEXTURE_COMPRESSION_ETC2)
}
}
#[derive(Clone, Copy, Debug)]
pub enum DataFormat {
Rgb,
Rgba,
Rrr,
Rrrg,
Rg,
}
#[derive(Clone, Copy, Debug)]
pub enum TranscodeFormat {
Etc1s,
Uastc(DataFormat),
// Has to be transcoded to R8Unorm for use with `wgpu`
R8UnormSrgb,
// Has to be transcoded to R8G8Unorm for use with `wgpu`
Rg8UnormSrgb,
// Has to be transcoded to Rgba8 for use with `wgpu`
Rgb8,
}
/// An error that occurs when loading a texture
#[derive(Error, Debug)]
pub enum TextureError {
#[error("invalid image mime type: {0}")]
InvalidImageMimeType(String),
#[error("invalid image extension: {0}")]
InvalidImageExtension(String),
#[error("failed to load an image: {0}")]
ImageError(#[from] image::ImageError),
#[error("unsupported texture format: {0}")]
UnsupportedTextureFormat(String),
#[error("supercompression not supported: {0}")]
SuperCompressionNotSupported(String),
#[error("failed to load an image: {0}")]
SuperDecompressionError(String),
#[error("invalid data: {0}")]
InvalidData(String),
#[error("transcode error: {0}")]
TranscodeError(String),
#[error("format requires transcoding: {0:?}")]
FormatRequiresTranscodingError(TranscodeFormat),
/// Only cubemaps with six faces are supported.
#[error("only cubemaps with six faces are supported")]
IncompleteCubemap,
}
/// The type of a raw image buffer.
#[derive(Debug)]
pub enum ImageType<'a> {
/// The mime type of an image, for example `"image/png"`.
MimeType(&'a str),
/// The extension of an image file, for example `"png"`.
Extension(&'a str),
/// The direct format of the image
Format(ImageFormat),
}
impl<'a> ImageType<'a> {
pub fn to_image_format(&self) -> Result<ImageFormat, TextureError> {
match self {
ImageType::MimeType(mime_type) => ImageFormat::from_mime_type(mime_type)
.ok_or_else(|| TextureError::InvalidImageMimeType(mime_type.to_string())),
ImageType::Extension(extension) => ImageFormat::from_extension(extension)
.ok_or_else(|| TextureError::InvalidImageExtension(extension.to_string())),
ImageType::Format(format) => Ok(*format),
}
}
}
/// Used to calculate the volume of an item.
pub trait Volume {
fn volume(&self) -> usize;
}
impl Volume for Extent3d {
/// Calculates the volume of the [`Extent3d`].
fn volume(&self) -> usize {
(self.width * self.height * self.depth_or_array_layers) as usize
}
}
/// Extends the wgpu [`TextureFormat`] with information about the pixel.
pub trait TextureFormatPixelInfo {
/// Returns the size of a pixel in bytes of the format.
fn pixel_size(&self) -> usize;
}
impl TextureFormatPixelInfo for TextureFormat {
fn pixel_size(&self) -> usize {
let info = self;
match info.block_dimensions() {
(1, 1) => info.block_copy_size(None).unwrap() as usize,
_ => panic!("Using pixel_size for compressed textures is invalid"),
}
}
}
/// The GPU-representation of an [`Image`].
/// Consists of the [`Texture`], its [`TextureView`] and the corresponding [`Sampler`], and the texture's size.
#[derive(Debug, Clone)]
pub struct GpuImage {
pub texture: Texture,
pub texture_view: TextureView,
pub texture_format: TextureFormat,
pub sampler: Sampler,
pub size: Vec2,
pub mip_level_count: u32,
}
impl RenderAsset for Image {
type PreparedAsset = GpuImage;
type Param = (
SRes<RenderDevice>,
SRes<RenderQueue>,
SRes<DefaultImageSampler>,
);
fn asset_usage(&self) -> RenderAssetUsages {
self.asset_usage
}
/// Converts the extracted image into a [`GpuImage`].
fn prepare_asset(
self,
(render_device, render_queue, default_sampler): &mut SystemParamItem<Self::Param>,
) -> Result<Self::PreparedAsset, PrepareAssetError<Self>> {
let texture = render_device.create_texture_with_data(
render_queue,
&self.texture_descriptor,
// TODO: Is this correct? Do we need to use `MipMajor` if it's a ktx2 file?
wgpu::util::TextureDataOrder::default(),
&self.data,
);
let texture_view = texture.create_view(
self.texture_view_descriptor
.or_else(|| Some(TextureViewDescriptor::default()))
.as_ref()
.unwrap(),
);
let size = Vec2::new(
self.texture_descriptor.size.width as f32,
self.texture_descriptor.size.height as f32,
);
let sampler = match self.sampler {
ImageSampler::Default => (***default_sampler).clone(),
ImageSampler::Descriptor(descriptor) => {
render_device.create_sampler(&descriptor.as_wgpu())
}
};
Ok(GpuImage {
texture,
texture_view,
texture_format: self.texture_descriptor.format,
sampler,
size,
mip_level_count: self.texture_descriptor.mip_level_count,
})
}
}
bitflags::bitflags! {
#[derive(Default, Clone, Copy, Eq, PartialEq, Debug)]
#[repr(transparent)]
pub struct CompressedImageFormats: u32 {
const NONE = 0;
const ASTC_LDR = 1 << 0;
const BC = 1 << 1;
const ETC2 = 1 << 2;
}
}
impl CompressedImageFormats {
pub fn from_features(features: wgpu::Features) -> Self {
let mut supported_compressed_formats = Self::default();
if features.contains(wgpu::Features::TEXTURE_COMPRESSION_ASTC) {
supported_compressed_formats |= Self::ASTC_LDR;
}
if features.contains(wgpu::Features::TEXTURE_COMPRESSION_BC) {
supported_compressed_formats |= Self::BC;
}
if features.contains(wgpu::Features::TEXTURE_COMPRESSION_ETC2) {
supported_compressed_formats |= Self::ETC2;
}
supported_compressed_formats
}
pub fn supports(&self, format: TextureFormat) -> bool {
match format {
TextureFormat::Bc1RgbaUnorm
| TextureFormat::Bc1RgbaUnormSrgb
| TextureFormat::Bc2RgbaUnorm
| TextureFormat::Bc2RgbaUnormSrgb
| TextureFormat::Bc3RgbaUnorm
| TextureFormat::Bc3RgbaUnormSrgb
| TextureFormat::Bc4RUnorm
| TextureFormat::Bc4RSnorm
| TextureFormat::Bc5RgUnorm
| TextureFormat::Bc5RgSnorm
| TextureFormat::Bc6hRgbUfloat
| TextureFormat::Bc6hRgbFloat
| TextureFormat::Bc7RgbaUnorm
| TextureFormat::Bc7RgbaUnormSrgb => self.contains(CompressedImageFormats::BC),
TextureFormat::Etc2Rgb8Unorm
| TextureFormat::Etc2Rgb8UnormSrgb
| TextureFormat::Etc2Rgb8A1Unorm
| TextureFormat::Etc2Rgb8A1UnormSrgb
| TextureFormat::Etc2Rgba8Unorm
| TextureFormat::Etc2Rgba8UnormSrgb
| TextureFormat::EacR11Unorm
| TextureFormat::EacR11Snorm
| TextureFormat::EacRg11Unorm
| TextureFormat::EacRg11Snorm => self.contains(CompressedImageFormats::ETC2),
TextureFormat::Astc { .. } => self.contains(CompressedImageFormats::ASTC_LDR),
_ => true,
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::render_asset::RenderAssetUsages;
#[test]
fn image_size() {
let size = Extent3d {
width: 200,
height: 100,
depth_or_array_layers: 1,
};
let image = Image::new_fill(
size,
TextureDimension::D2,
&[0, 0, 0, 255],
TextureFormat::Rgba8Unorm,
RenderAssetUsages::MAIN_WORLD,
);
assert_eq!(
Vec2::new(size.width as f32, size.height as f32),
image.size_f32()
);
}
#[test]
fn image_default_size() {
let image = Image::default();
assert_eq!(Vec2::ONE, image.size_f32());
}
}