bevy/examples/3d/parallax_mapping.rs
Marco Buono 12a2f83edd
Add consuming builder methods for more ergonomic Mesh creation (#10056)
# Objective

- This PR aims to make creating meshes a little bit more ergonomic,
specifically by removing the need for intermediate mutable variables.

## Solution

- We add methods that consume the `Mesh` and return a mesh with the
specified changes, so that meshes can be entirely constructed via
builder-style calls, without intermediate variables;
- Methods are flagged with `#[must_use]` to ensure proper use;
- Examples are updated to use the new methods where applicable. Some
examples are kept with the mutating methods so that users can still
easily discover them, and also where the new methods wouldn't really be
an improvement.

## Examples

Before:

```rust
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList);
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, vs);
mesh.insert_attribute(Mesh::ATTRIBUTE_NORMAL, vns);
mesh.insert_attribute(Mesh::ATTRIBUTE_UV_0, vts);
mesh.set_indices(Some(Indices::U32(tris)));
mesh
```

After:

```rust
Mesh::new(PrimitiveTopology::TriangleList)
    .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, vs)
    .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vns)
    .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, vts)
    .with_indices(Some(Indices::U32(tris)))
```

Before:

```rust
let mut cube = Mesh::from(shape::Cube { size: 1.0 });

cube.generate_tangents().unwrap();

PbrBundle {
    mesh: meshes.add(cube),
    ..default()
}
```

After:

```rust
PbrBundle {
    mesh: meshes.add(
        Mesh::from(shape::Cube { size: 1.0 })
            .with_generated_tangents()
            .unwrap(),
    ),
    ..default()
}
```

---

## Changelog

- Added consuming builder methods for more ergonomic `Mesh` creation:
`with_inserted_attribute()`, `with_removed_attribute()`,
`with_indices()`, `with_duplicated_vertices()`,
`with_computed_flat_normals()`, `with_generated_tangents()`,
`with_morph_targets()`, `with_morph_target_names()`.
2023-10-09 19:47:41 +00:00

388 lines
12 KiB
Rust

//! A simple 3D scene with a spinning cube with a normal map and depth map to demonstrate parallax mapping.
//! Press left mouse button to cycle through different views.
use std::fmt;
use bevy::{prelude::*, render::render_resource::TextureFormat, window::close_on_esc};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(Normal(None))
.add_systems(Startup, setup)
.add_systems(
Update,
(
spin,
update_normal,
move_camera,
update_parallax_depth_scale,
update_parallax_layers,
switch_method,
close_on_esc,
),
)
.run();
}
#[derive(Component)]
struct Spin {
speed: f32,
}
/// The camera, used to move camera on click.
#[derive(Component)]
struct CameraController;
const DEPTH_CHANGE_RATE: f32 = 0.1;
const DEPTH_UPDATE_STEP: f32 = 0.03;
const MAX_DEPTH: f32 = 0.3;
struct TargetDepth(f32);
impl Default for TargetDepth {
fn default() -> Self {
TargetDepth(0.09)
}
}
struct TargetLayers(f32);
impl Default for TargetLayers {
fn default() -> Self {
TargetLayers(5.0)
}
}
struct CurrentMethod(ParallaxMappingMethod);
impl Default for CurrentMethod {
fn default() -> Self {
CurrentMethod(ParallaxMappingMethod::Relief { max_steps: 4 })
}
}
impl fmt::Display for CurrentMethod {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.0 {
ParallaxMappingMethod::Occlusion => write!(f, "Parallax Occlusion Mapping"),
ParallaxMappingMethod::Relief { max_steps } => {
write!(f, "Relief Mapping with {max_steps} steps")
}
}
}
}
impl CurrentMethod {
fn next_method(&mut self) {
use ParallaxMappingMethod::*;
self.0 = match self.0 {
Occlusion => Relief { max_steps: 2 },
Relief { max_steps } if max_steps < 3 => Relief { max_steps: 4 },
Relief { max_steps } if max_steps < 5 => Relief { max_steps: 8 },
Relief { .. } => Occlusion,
}
}
}
fn update_parallax_depth_scale(
input: Res<Input<KeyCode>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut target_depth: Local<TargetDepth>,
mut depth_update: Local<bool>,
mut text: Query<&mut Text>,
) {
if input.just_pressed(KeyCode::Key1) {
target_depth.0 -= DEPTH_UPDATE_STEP;
target_depth.0 = target_depth.0.max(0.0);
*depth_update = true;
}
if input.just_pressed(KeyCode::Key2) {
target_depth.0 += DEPTH_UPDATE_STEP;
target_depth.0 = target_depth.0.min(MAX_DEPTH);
*depth_update = true;
}
if *depth_update {
let mut text = text.single_mut();
for (_, mat) in materials.iter_mut() {
let current_depth = mat.parallax_depth_scale;
let new_depth =
current_depth * (1.0 - DEPTH_CHANGE_RATE) + (target_depth.0 * DEPTH_CHANGE_RATE);
mat.parallax_depth_scale = new_depth;
text.sections[0].value = format!("Parallax depth scale: {new_depth:.5}\n");
if (new_depth - current_depth).abs() <= 0.000000001 {
*depth_update = false;
}
}
}
}
fn switch_method(
input: Res<Input<KeyCode>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut text: Query<&mut Text>,
mut current: Local<CurrentMethod>,
) {
if input.just_pressed(KeyCode::Space) {
current.next_method();
} else {
return;
}
let mut text = text.single_mut();
text.sections[2].value = format!("Method: {}\n", *current);
for (_, mat) in materials.iter_mut() {
mat.parallax_mapping_method = current.0;
}
}
fn update_parallax_layers(
input: Res<Input<KeyCode>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut target_layers: Local<TargetLayers>,
mut text: Query<&mut Text>,
) {
if input.just_pressed(KeyCode::Key3) {
target_layers.0 -= 1.0;
target_layers.0 = target_layers.0.max(0.0);
} else if input.just_pressed(KeyCode::Key4) {
target_layers.0 += 1.0;
} else {
return;
}
let layer_count = target_layers.0.exp2();
let mut text = text.single_mut();
text.sections[1].value = format!("Layers: {layer_count:.0}\n");
for (_, mat) in materials.iter_mut() {
mat.max_parallax_layer_count = layer_count;
}
}
fn spin(time: Res<Time>, mut query: Query<(&mut Transform, &Spin)>) {
for (mut transform, spin) in query.iter_mut() {
transform.rotate_local_y(spin.speed * time.delta_seconds());
transform.rotate_local_x(spin.speed * time.delta_seconds());
transform.rotate_local_z(-spin.speed * time.delta_seconds());
}
}
// Camera positions to cycle through when left-clicking.
const CAMERA_POSITIONS: &[Transform] = &[
Transform {
translation: Vec3::new(1.5, 1.5, 1.5),
rotation: Quat::from_xyzw(-0.279, 0.364, 0.115, 0.880),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(2.4, 0.0, 0.2),
rotation: Quat::from_xyzw(0.094, 0.676, 0.116, 0.721),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(2.4, 2.6, -4.3),
rotation: Quat::from_xyzw(0.170, 0.908, 0.308, 0.225),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(-1.0, 0.8, -1.2),
rotation: Quat::from_xyzw(-0.004, 0.909, 0.247, -0.335),
scale: Vec3::ONE,
},
];
fn move_camera(
mut camera: Query<&mut Transform, With<CameraController>>,
mut current_view: Local<usize>,
button: Res<Input<MouseButton>>,
) {
let mut camera = camera.single_mut();
if button.just_pressed(MouseButton::Left) {
*current_view = (*current_view + 1) % CAMERA_POSITIONS.len();
}
let target = CAMERA_POSITIONS[*current_view];
camera.translation = camera.translation.lerp(target.translation, 0.2);
camera.rotation = camera.rotation.slerp(target.rotation, 0.2);
}
fn setup(
mut commands: Commands,
mut materials: ResMut<Assets<StandardMaterial>>,
mut meshes: ResMut<Assets<Mesh>>,
mut normal: ResMut<Normal>,
asset_server: Res<AssetServer>,
) {
// The normal map. Note that to generate it in the GIMP image editor, you should
// open the depth map, and do Filters → Generic → Normal Map
// You should enable the "flip X" checkbox.
let normal_handle = asset_server.load("textures/parallax_example/cube_normal.png");
normal.0 = Some(normal_handle);
// Camera
commands.spawn((
Camera3dBundle {
transform: Transform::from_xyz(1.5, 1.5, 1.5).looking_at(Vec3::ZERO, Vec3::Y),
..default()
},
CameraController,
));
// light
commands
.spawn(PointLightBundle {
transform: Transform::from_xyz(1.8, 0.7, -1.1),
point_light: PointLight {
intensity: 226.0,
shadows_enabled: true,
..default()
},
..default()
})
.with_children(|commands| {
// represent the light source as a sphere
let mesh = meshes.add(
shape::Icosphere {
radius: 0.05,
subdivisions: 3,
}
.try_into()
.unwrap(),
);
commands.spawn(PbrBundle { mesh, ..default() });
});
// Plane
commands.spawn(PbrBundle {
mesh: meshes.add(
shape::Plane {
size: 10.0,
subdivisions: 0,
}
.into(),
),
material: materials.add(StandardMaterial {
// standard material derived from dark green, but
// with roughness and reflectance set.
perceptual_roughness: 0.45,
reflectance: 0.18,
..Color::rgb_u8(0, 80, 0).into()
}),
transform: Transform::from_xyz(0.0, -1.0, 0.0),
..default()
});
let parallax_depth_scale = TargetDepth::default().0;
let max_parallax_layer_count = TargetLayers::default().0.exp2();
let parallax_mapping_method = CurrentMethod::default();
let parallax_material = materials.add(StandardMaterial {
perceptual_roughness: 0.4,
base_color_texture: Some(asset_server.load("textures/parallax_example/cube_color.png")),
normal_map_texture: normal.0.clone(),
// The depth map is a greyscale texture where black is the highest level and
// white the lowest.
depth_map: Some(asset_server.load("textures/parallax_example/cube_depth.png")),
parallax_depth_scale,
parallax_mapping_method: parallax_mapping_method.0,
max_parallax_layer_count,
..default()
});
commands.spawn((
PbrBundle {
mesh: meshes.add(
// NOTE: for normal maps and depth maps to work, the mesh
// needs tangents generated.
Mesh::from(shape::Cube { size: 1.0 })
.with_generated_tangents()
.unwrap(),
),
material: parallax_material.clone_weak(),
..default()
},
Spin { speed: 0.3 },
));
let background_cube = meshes.add(
Mesh::from(shape::Cube { size: 40.0 })
.with_generated_tangents()
.unwrap(),
);
let background_cube_bundle = |translation| {
(
PbrBundle {
transform: Transform::from_translation(translation),
mesh: background_cube.clone(),
material: parallax_material.clone(),
..default()
},
Spin { speed: -0.1 },
)
};
commands.spawn(background_cube_bundle(Vec3::new(45., 0., 0.)));
commands.spawn(background_cube_bundle(Vec3::new(-45., 0., 0.)));
commands.spawn(background_cube_bundle(Vec3::new(0., 0., 45.)));
commands.spawn(background_cube_bundle(Vec3::new(0., 0., -45.)));
let style = TextStyle {
font_size: 20.0,
..default()
};
// example instructions
commands.spawn(
TextBundle::from_sections(vec![
TextSection::new(
format!("Parallax depth scale: {parallax_depth_scale:.5}\n"),
style.clone(),
),
TextSection::new(
format!("Layers: {max_parallax_layer_count:.0}\n"),
style.clone(),
),
TextSection::new(format!("{parallax_mapping_method}\n"), style.clone()),
TextSection::new("\n\n", style.clone()),
TextSection::new("Controls:\n", style.clone()),
TextSection::new("Left click - Change view angle\n", style.clone()),
TextSection::new(
"1/2 - Decrease/Increase parallax depth scale\n",
style.clone(),
),
TextSection::new("3/4 - Decrease/Increase layer count\n", style.clone()),
TextSection::new("Space - Switch parallaxing algorithm\n", style),
])
.with_style(Style {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
}),
);
}
/// Store handle of the normal to later modify its format in [`update_normal`].
#[derive(Resource)]
struct Normal(Option<Handle<Image>>);
/// Work around the default bevy image loader.
///
/// The bevy image loader used by `AssetServer` always loads images in
/// `Srgb` mode, which is usually what it should do,
/// but is incompatible with normal maps.
///
/// Normal maps require a texture in linear color space,
/// so we overwrite the format of the normal map we loaded through `AssetServer`
/// in this system.
///
/// Note that this method of conversion is a last resort workaround. You should
/// get your normal maps from a 3d model file, like gltf.
///
/// In this system, we wait until the image is loaded, immediately
/// change its format and never run the logic afterward.
fn update_normal(
mut already_ran: Local<bool>,
mut images: ResMut<Assets<Image>>,
normal: Res<Normal>,
) {
if *already_ran {
return;
}
if let Some(normal) = normal.0.as_ref() {
if let Some(image) = images.get_mut(normal) {
image.texture_descriptor.format = TextureFormat::Rgba8Unorm;
*already_ran = true;
}
}
}