bevy/crates/bevy_pbr/src/render/pbr_prepass.wgsl
robtfm 10f5c92068
improve shader import model (#5703)
# Objective

operate on naga IR directly to improve handling of shader modules.
- give codespan reporting into imported modules
- allow glsl to be used from wgsl and vice-versa

the ultimate objective is to make it possible to 
- provide user hooks for core shader functions (to modify light
behaviour within the standard pbr pipeline, for example)
- make automatic binding slot allocation possible

but ... since this is already big, adds some value and (i think) is at
feature parity with the existing code, i wanted to push this now.

## Solution

i made a crate called naga_oil (https://github.com/robtfm/naga_oil -
unpublished for now, could be part of bevy) which manages modules by
- building each module independantly to naga IR
- creating "header" files for each supported language, which are used to
build dependent modules/shaders
- make final shaders by combining the shader IR with the IR for imported
modules

then integrated this into bevy, replacing some of the existing shader
processing stuff. also reworked examples to reflect this.

## Migration Guide

shaders that don't use `#import` directives should work without changes.

the most notable user-facing difference is that imported
functions/variables/etc need to be qualified at point of use, and
there's no "leakage" of visible stuff into your shader scope from the
imports of your imports, so if you used things imported by your imports,
you now need to import them directly and qualify them.

the current strategy of including/'spreading' `mesh_vertex_output`
directly into a struct doesn't work any more, so these need to be
modified as per the examples (e.g. color_material.wgsl, or many others).
mesh data is assumed to be in bindgroup 2 by default, if mesh data is
bound into bindgroup 1 instead then the shader def `MESH_BINDGROUP_1`
needs to be added to the pipeline shader_defs.
2023-06-27 00:29:22 +00:00

139 lines
4.9 KiB
WebGPU Shading Language

#import bevy_pbr::prepass_bindings
#import bevy_pbr::pbr_bindings
#import bevy_pbr::pbr_types
#ifdef NORMAL_PREPASS
#import bevy_pbr::pbr_functions
#endif // NORMAL_PREPASS
struct FragmentInput {
@builtin(front_facing) is_front: bool,
@builtin(position) frag_coord: vec4<f32>,
#ifdef VERTEX_UVS
@location(0) uv: vec2<f32>,
#endif // VERTEX_UVS
#ifdef NORMAL_PREPASS
@location(1) world_normal: vec3<f32>,
#ifdef VERTEX_TANGENTS
@location(2) world_tangent: vec4<f32>,
#endif // VERTEX_TANGENTS
#endif // NORMAL_PREPASS
#ifdef MOTION_VECTOR_PREPASS
@location(3) world_position: vec4<f32>,
@location(4) previous_world_position: vec4<f32>,
#endif // MOTION_VECTOR_PREPASS
#ifdef DEPTH_CLAMP_ORTHO
@location(5) clip_position_unclamped: vec4<f32>,
#endif // DEPTH_CLAMP_ORTHO
};
// Cutoff used for the premultiplied alpha modes BLEND and ADD.
const PREMULTIPLIED_ALPHA_CUTOFF = 0.05;
// We can use a simplified version of alpha_discard() here since we only need to handle the alpha_cutoff
fn prepass_alpha_discard(in: FragmentInput) {
#ifdef MAY_DISCARD
var output_color: vec4<f32> = bevy_pbr::pbr_bindings::material.base_color;
#ifdef VERTEX_UVS
if (bevy_pbr::pbr_bindings::material.flags & bevy_pbr::pbr_types::STANDARD_MATERIAL_FLAGS_BASE_COLOR_TEXTURE_BIT) != 0u {
output_color = output_color * textureSampleBias(bevy_pbr::pbr_bindings::base_color_texture, bevy_pbr::pbr_bindings::base_color_sampler, in.uv, bevy_pbr::prepass_bindings::view.mip_bias);
}
#endif // VERTEX_UVS
let alpha_mode = bevy_pbr::pbr_bindings::material.flags & bevy_pbr::pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_RESERVED_BITS;
if alpha_mode == bevy_pbr::pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_MASK {
if output_color.a < bevy_pbr::pbr_bindings::material.alpha_cutoff {
discard;
}
} else if (alpha_mode == bevy_pbr::pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_BLEND || alpha_mode == bevy_pbr::pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_ADD) {
if output_color.a < PREMULTIPLIED_ALPHA_CUTOFF {
discard;
}
} else if alpha_mode == bevy_pbr::pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_PREMULTIPLIED {
if all(output_color < vec4(PREMULTIPLIED_ALPHA_CUTOFF)) {
discard;
}
}
#endif // MAY_DISCARD
}
#ifdef PREPASS_FRAGMENT
struct FragmentOutput {
#ifdef NORMAL_PREPASS
@location(0) normal: vec4<f32>,
#endif // NORMAL_PREPASS
#ifdef MOTION_VECTOR_PREPASS
@location(1) motion_vector: vec2<f32>,
#endif // MOTION_VECTOR_PREPASS
#ifdef DEPTH_CLAMP_ORTHO
@builtin(frag_depth) frag_depth: f32,
#endif // DEPTH_CLAMP_ORTHO
}
@fragment
fn fragment(in: FragmentInput) -> FragmentOutput {
prepass_alpha_discard(in);
var out: FragmentOutput;
#ifdef DEPTH_CLAMP_ORTHO
out.frag_depth = in.clip_position_unclamped.z;
#endif // DEPTH_CLAMP_ORTHO
#ifdef NORMAL_PREPASS
// NOTE: Unlit bit not set means == 0 is true, so the true case is if lit
if (bevy_pbr::pbr_bindings::material.flags & bevy_pbr::pbr_types::STANDARD_MATERIAL_FLAGS_UNLIT_BIT) == 0u {
let world_normal = bevy_pbr::pbr_functions::prepare_world_normal(
in.world_normal,
(bevy_pbr::pbr_bindings::material.flags & bevy_pbr::pbr_types::STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT) != 0u,
in.is_front,
);
let normal = bevy_pbr::pbr_functions::apply_normal_mapping(
bevy_pbr::pbr_bindings::material.flags,
world_normal,
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
in.world_tangent,
#endif // STANDARDMATERIAL_NORMAL_MAP
#endif // VERTEX_TANGENTS
#ifdef VERTEX_UVS
in.uv,
#endif // VERTEX_UVS
);
out.normal = vec4(normal * 0.5 + vec3(0.5), 1.0);
} else {
out.normal = vec4(in.world_normal * 0.5 + vec3(0.5), 1.0);
}
#endif // NORMAL_PREPASS
#ifdef MOTION_VECTOR_PREPASS
let clip_position_t = bevy_pbr::prepass_bindings::view.unjittered_view_proj * in.world_position;
let clip_position = clip_position_t.xy / clip_position_t.w;
let previous_clip_position_t = bevy_pbr::prepass_bindings::previous_view_proj * in.previous_world_position;
let previous_clip_position = previous_clip_position_t.xy / previous_clip_position_t.w;
// These motion vectors are used as offsets to UV positions and are stored
// in the range -1,1 to allow offsetting from the one corner to the
// diagonally-opposite corner in UV coordinates, in either direction.
// A difference between diagonally-opposite corners of clip space is in the
// range -2,2, so this needs to be scaled by 0.5. And the V direction goes
// down where clip space y goes up, so y needs to be flipped.
out.motion_vector = (clip_position - previous_clip_position) * vec2(0.5, -0.5);
#endif // MOTION_VECTOR_PREPASS
return out;
}
#else
@fragment
fn fragment(in: FragmentInput) {
prepass_alpha_discard(in);
}
#endif // PREPASS_FRAGMENT