bevy/crates/bevy_render/src/render_asset.rs
Zachary Harrold a6adced9ed
Deny derive_more error feature and replace it with thiserror (#16684)
# Objective

- Remove `derive_more`'s error derivation and replace it with
`thiserror`

## Solution

- Added `derive_more`'s `error` feature to `deny.toml` to prevent it
sneaking back in.
- Reverted to `thiserror` error derivation

## Notes

Merge conflicts were too numerous to revert the individual changes, so
this reversion was done manually. Please scrutinise carefully during
review.
2024-12-06 17:03:55 +00:00

450 lines
16 KiB
Rust

use crate::{
render_resource::AsBindGroupError, ExtractSchedule, MainWorld, Render, RenderApp, RenderSet,
};
use bevy_app::{App, Plugin, SubApp};
pub use bevy_asset::RenderAssetUsages;
use bevy_asset::{Asset, AssetEvent, AssetId, Assets};
use bevy_ecs::{
prelude::{Commands, EventReader, IntoSystemConfigs, ResMut, Resource},
schedule::{SystemConfigs, SystemSet},
system::{StaticSystemParam, SystemParam, SystemParamItem, SystemState},
world::{FromWorld, Mut},
};
use bevy_render_macros::ExtractResource;
use bevy_utils::{
tracing::{debug, error},
HashMap, HashSet,
};
use core::marker::PhantomData;
use thiserror::Error;
#[derive(Debug, Error)]
pub enum PrepareAssetError<E: Send + Sync + 'static> {
#[error("Failed to prepare asset")]
RetryNextUpdate(E),
#[error("Failed to build bind group: {0}")]
AsBindGroupError(AsBindGroupError),
}
/// The system set during which we extract modified assets to the render world.
#[derive(SystemSet, Clone, PartialEq, Eq, Debug, Hash)]
pub struct ExtractAssetsSet;
/// Describes how an asset gets extracted and prepared for rendering.
///
/// In the [`ExtractSchedule`] step the [`RenderAsset::SourceAsset`] is transferred
/// from the "main world" into the "render world".
///
/// After that in the [`RenderSet::PrepareAssets`] step the extracted asset
/// is transformed into its GPU-representation of type [`RenderAsset`].
pub trait RenderAsset: Send + Sync + 'static + Sized {
/// The representation of the asset in the "main world".
type SourceAsset: Asset + Clone;
/// Specifies all ECS data required by [`RenderAsset::prepare_asset`].
///
/// For convenience use the [`lifetimeless`](bevy_ecs::system::lifetimeless) [`SystemParam`].
type Param: SystemParam;
/// Whether or not to unload the asset after extracting it to the render world.
#[inline]
fn asset_usage(_source_asset: &Self::SourceAsset) -> RenderAssetUsages {
RenderAssetUsages::default()
}
/// Size of the data the asset will upload to the gpu. Specifying a return value
/// will allow the asset to be throttled via [`RenderAssetBytesPerFrame`].
#[inline]
#[allow(unused_variables)]
fn byte_len(source_asset: &Self::SourceAsset) -> Option<usize> {
None
}
/// Prepares the [`RenderAsset::SourceAsset`] for the GPU by transforming it into a [`RenderAsset`].
///
/// ECS data may be accessed via `param`.
fn prepare_asset(
source_asset: Self::SourceAsset,
asset_id: AssetId<Self::SourceAsset>,
param: &mut SystemParamItem<Self::Param>,
) -> Result<Self, PrepareAssetError<Self::SourceAsset>>;
/// Called whenever the [`RenderAsset::SourceAsset`] has been removed.
///
/// You can implement this method if you need to access ECS data (via
/// `_param`) in order to perform cleanup tasks when the asset is removed.
///
/// The default implementation does nothing.
fn unload_asset(
_source_asset: AssetId<Self::SourceAsset>,
_param: &mut SystemParamItem<Self::Param>,
) {
}
}
/// This plugin extracts the changed assets from the "app world" into the "render world"
/// and prepares them for the GPU. They can then be accessed from the [`RenderAssets`] resource.
///
/// Therefore it sets up the [`ExtractSchedule`] and
/// [`RenderSet::PrepareAssets`] steps for the specified [`RenderAsset`].
///
/// The `AFTER` generic parameter can be used to specify that `A::prepare_asset` should not be run until
/// `prepare_assets::<AFTER>` has completed. This allows the `prepare_asset` function to depend on another
/// prepared [`RenderAsset`], for example `Mesh::prepare_asset` relies on `RenderAssets::<GpuImage>` for morph
/// targets, so the plugin is created as `RenderAssetPlugin::<RenderMesh, GpuImage>::default()`.
pub struct RenderAssetPlugin<A: RenderAsset, AFTER: RenderAssetDependency + 'static = ()> {
phantom: PhantomData<fn() -> (A, AFTER)>,
}
impl<A: RenderAsset, AFTER: RenderAssetDependency + 'static> Default
for RenderAssetPlugin<A, AFTER>
{
fn default() -> Self {
Self {
phantom: Default::default(),
}
}
}
impl<A: RenderAsset, AFTER: RenderAssetDependency + 'static> Plugin
for RenderAssetPlugin<A, AFTER>
{
fn build(&self, app: &mut App) {
app.init_resource::<CachedExtractRenderAssetSystemState<A>>();
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<ExtractedAssets<A>>()
.init_resource::<RenderAssets<A>>()
.init_resource::<PrepareNextFrameAssets<A>>()
.add_systems(
ExtractSchedule,
extract_render_asset::<A>.in_set(ExtractAssetsSet),
);
AFTER::register_system(
render_app,
prepare_assets::<A>.in_set(RenderSet::PrepareAssets),
);
}
}
}
// helper to allow specifying dependencies between render assets
pub trait RenderAssetDependency {
fn register_system(render_app: &mut SubApp, system: SystemConfigs);
}
impl RenderAssetDependency for () {
fn register_system(render_app: &mut SubApp, system: SystemConfigs) {
render_app.add_systems(Render, system);
}
}
impl<A: RenderAsset> RenderAssetDependency for A {
fn register_system(render_app: &mut SubApp, system: SystemConfigs) {
render_app.add_systems(Render, system.after(prepare_assets::<A>));
}
}
/// Temporarily stores the extracted and removed assets of the current frame.
#[derive(Resource)]
pub struct ExtractedAssets<A: RenderAsset> {
/// The assets extracted this frame.
pub extracted: Vec<(AssetId<A::SourceAsset>, A::SourceAsset)>,
/// IDs of the assets removed this frame.
///
/// These assets will not be present in [`ExtractedAssets::extracted`].
pub removed: HashSet<AssetId<A::SourceAsset>>,
/// IDs of the assets added this frame.
pub added: HashSet<AssetId<A::SourceAsset>>,
}
impl<A: RenderAsset> Default for ExtractedAssets<A> {
fn default() -> Self {
Self {
extracted: Default::default(),
removed: Default::default(),
added: Default::default(),
}
}
}
/// Stores all GPU representations ([`RenderAsset`])
/// of [`RenderAsset::SourceAsset`] as long as they exist.
#[derive(Resource)]
pub struct RenderAssets<A: RenderAsset>(HashMap<AssetId<A::SourceAsset>, A>);
impl<A: RenderAsset> Default for RenderAssets<A> {
fn default() -> Self {
Self(Default::default())
}
}
impl<A: RenderAsset> RenderAssets<A> {
pub fn get(&self, id: impl Into<AssetId<A::SourceAsset>>) -> Option<&A> {
self.0.get(&id.into())
}
pub fn get_mut(&mut self, id: impl Into<AssetId<A::SourceAsset>>) -> Option<&mut A> {
self.0.get_mut(&id.into())
}
pub fn insert(&mut self, id: impl Into<AssetId<A::SourceAsset>>, value: A) -> Option<A> {
self.0.insert(id.into(), value)
}
pub fn remove(&mut self, id: impl Into<AssetId<A::SourceAsset>>) -> Option<A> {
self.0.remove(&id.into())
}
pub fn iter(&self) -> impl Iterator<Item = (AssetId<A::SourceAsset>, &A)> {
self.0.iter().map(|(k, v)| (*k, v))
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = (AssetId<A::SourceAsset>, &mut A)> {
self.0.iter_mut().map(|(k, v)| (*k, v))
}
}
#[derive(Resource)]
struct CachedExtractRenderAssetSystemState<A: RenderAsset> {
state: SystemState<(
EventReader<'static, 'static, AssetEvent<A::SourceAsset>>,
ResMut<'static, Assets<A::SourceAsset>>,
)>,
}
impl<A: RenderAsset> FromWorld for CachedExtractRenderAssetSystemState<A> {
fn from_world(world: &mut bevy_ecs::world::World) -> Self {
Self {
state: SystemState::new(world),
}
}
}
/// This system extracts all created or modified assets of the corresponding [`RenderAsset::SourceAsset`] type
/// into the "render world".
pub(crate) fn extract_render_asset<A: RenderAsset>(
mut commands: Commands,
mut main_world: ResMut<MainWorld>,
) {
main_world.resource_scope(
|world, mut cached_state: Mut<CachedExtractRenderAssetSystemState<A>>| {
let (mut events, mut assets) = cached_state.state.get_mut(world);
let mut changed_assets = HashSet::default();
let mut removed = HashSet::default();
for event in events.read() {
#[allow(clippy::match_same_arms)]
match event {
AssetEvent::Added { id } | AssetEvent::Modified { id } => {
changed_assets.insert(*id);
}
AssetEvent::Removed { .. } => {}
AssetEvent::Unused { id } => {
changed_assets.remove(id);
removed.insert(*id);
}
AssetEvent::LoadedWithDependencies { .. } => {
// TODO: handle this
}
}
}
let mut extracted_assets = Vec::new();
let mut added = HashSet::new();
for id in changed_assets.drain() {
if let Some(asset) = assets.get(id) {
let asset_usage = A::asset_usage(asset);
if asset_usage.contains(RenderAssetUsages::RENDER_WORLD) {
if asset_usage == RenderAssetUsages::RENDER_WORLD {
if let Some(asset) = assets.remove(id) {
extracted_assets.push((id, asset));
added.insert(id);
}
} else {
extracted_assets.push((id, asset.clone()));
added.insert(id);
}
}
}
}
commands.insert_resource(ExtractedAssets::<A> {
extracted: extracted_assets,
removed,
added,
});
cached_state.state.apply(world);
},
);
}
// TODO: consider storing inside system?
/// All assets that should be prepared next frame.
#[derive(Resource)]
pub struct PrepareNextFrameAssets<A: RenderAsset> {
assets: Vec<(AssetId<A::SourceAsset>, A::SourceAsset)>,
}
impl<A: RenderAsset> Default for PrepareNextFrameAssets<A> {
fn default() -> Self {
Self {
assets: Default::default(),
}
}
}
/// This system prepares all assets of the corresponding [`RenderAsset::SourceAsset`] type
/// which where extracted this frame for the GPU.
pub fn prepare_assets<A: RenderAsset>(
mut extracted_assets: ResMut<ExtractedAssets<A>>,
mut render_assets: ResMut<RenderAssets<A>>,
mut prepare_next_frame: ResMut<PrepareNextFrameAssets<A>>,
param: StaticSystemParam<<A as RenderAsset>::Param>,
mut bpf: ResMut<RenderAssetBytesPerFrame>,
) {
let mut wrote_asset_count = 0;
let mut param = param.into_inner();
let queued_assets = core::mem::take(&mut prepare_next_frame.assets);
for (id, extracted_asset) in queued_assets {
if extracted_assets.removed.contains(&id) || extracted_assets.added.contains(&id) {
// skip previous frame's assets that have been removed or updated
continue;
}
let write_bytes = if let Some(size) = A::byte_len(&extracted_asset) {
// we could check if available bytes > byte_len here, but we want to make some
// forward progress even if the asset is larger than the max bytes per frame.
// this way we always write at least one (sized) asset per frame.
// in future we could also consider partial asset uploads.
if bpf.exhausted() {
prepare_next_frame.assets.push((id, extracted_asset));
continue;
}
size
} else {
0
};
match A::prepare_asset(extracted_asset, id, &mut param) {
Ok(prepared_asset) => {
render_assets.insert(id, prepared_asset);
bpf.write_bytes(write_bytes);
wrote_asset_count += 1;
}
Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
prepare_next_frame.assets.push((id, extracted_asset));
}
Err(PrepareAssetError::AsBindGroupError(e)) => {
error!(
"{} Bind group construction failed: {e}",
core::any::type_name::<A>()
);
}
}
}
for removed in extracted_assets.removed.drain() {
render_assets.remove(removed);
A::unload_asset(removed, &mut param);
}
for (id, extracted_asset) in extracted_assets.extracted.drain(..) {
// we remove previous here to ensure that if we are updating the asset then
// any users will not see the old asset after a new asset is extracted,
// even if the new asset is not yet ready or we are out of bytes to write.
render_assets.remove(id);
let write_bytes = if let Some(size) = A::byte_len(&extracted_asset) {
if bpf.exhausted() {
prepare_next_frame.assets.push((id, extracted_asset));
continue;
}
size
} else {
0
};
match A::prepare_asset(extracted_asset, id, &mut param) {
Ok(prepared_asset) => {
render_assets.insert(id, prepared_asset);
bpf.write_bytes(write_bytes);
wrote_asset_count += 1;
}
Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
prepare_next_frame.assets.push((id, extracted_asset));
}
Err(PrepareAssetError::AsBindGroupError(e)) => {
error!(
"{} Bind group construction failed: {e}",
core::any::type_name::<A>()
);
}
}
}
if bpf.exhausted() && !prepare_next_frame.assets.is_empty() {
debug!(
"{} write budget exhausted with {} assets remaining (wrote {})",
core::any::type_name::<A>(),
prepare_next_frame.assets.len(),
wrote_asset_count
);
}
}
/// A resource that attempts to limit the amount of data transferred from cpu to gpu
/// each frame, preventing choppy frames at the cost of waiting longer for gpu assets
/// to become available
#[derive(Resource, Default, Debug, Clone, Copy, ExtractResource)]
pub struct RenderAssetBytesPerFrame {
pub max_bytes: Option<usize>,
pub available: usize,
}
impl RenderAssetBytesPerFrame {
/// `max_bytes`: the number of bytes to write per frame.
/// this is a soft limit: only full assets are written currently, uploading stops
/// after the first asset that exceeds the limit.
/// To participate, assets should implement [`RenderAsset::byte_len`]. If the default
/// is not overridden, the assets are assumed to be small enough to upload without restriction.
pub fn new(max_bytes: usize) -> Self {
Self {
max_bytes: Some(max_bytes),
available: 0,
}
}
/// Reset the available bytes. Called once per frame by the [`crate::RenderPlugin`].
pub fn reset(&mut self) {
self.available = self.max_bytes.unwrap_or(usize::MAX);
}
/// check how many bytes are available since the last reset
pub fn available_bytes(&self, required_bytes: usize) -> usize {
if self.max_bytes.is_none() {
return required_bytes;
}
required_bytes.min(self.available)
}
/// decrease the available bytes for the current frame
fn write_bytes(&mut self, bytes: usize) {
if self.max_bytes.is_none() {
return;
}
let write_bytes = bytes.min(self.available);
self.available -= write_bytes;
}
// check if any bytes remain available for writing this frame
fn exhausted(&self) -> bool {
self.max_bytes.is_some() && self.available == 0
}
}