mirror of
https://github.com/bevyengine/bevy
synced 2024-11-10 07:04:33 +00:00
84363f2fab
# Objective - There are several redundant imports in the tests and examples that are not caught by CI because additional flags need to be passed. ## Solution - Run `cargo check --workspace --tests` and `cargo check --workspace --examples`, then fix all warnings. - Add `test-check` to CI, which will be run in the check-compiles job. This should catch future warnings for tests. Examples are already checked, but I'm not yet sure why they weren't caught. ## Discussion - Should the `--tests` and `--examples` flags be added to CI, so this is caught in the future? - If so, #12818 will need to be merged first. It was also a warning raised by checking the examples, but I chose to split off into a separate PR. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
267 lines
8.6 KiB
Rust
267 lines
8.6 KiB
Rust
//! This example shows how to align the orientations of objects in 3D space along two axes using the `Transform::align` API.
|
|
|
|
use bevy::color::palettes::basic::{GRAY, RED, WHITE};
|
|
use bevy::input::mouse::{MouseButtonInput, MouseMotion};
|
|
use bevy::prelude::*;
|
|
use rand::{Rng, SeedableRng};
|
|
use rand_chacha::ChaCha8Rng;
|
|
use std::f32::consts::PI;
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_systems(Startup, setup)
|
|
.add_systems(Update, (draw_cube_axes, draw_random_axes))
|
|
.add_systems(Update, (handle_keypress, handle_mouse, rotate_cube).chain())
|
|
.run();
|
|
}
|
|
|
|
/// This struct stores metadata for a single rotational move of the cube
|
|
#[derive(Component, Default)]
|
|
struct Cube {
|
|
/// The initial transform of the cube move, the starting point of interpolation
|
|
initial_transform: Transform,
|
|
|
|
/// The target transform of the cube move, the endpoint of interpolation
|
|
target_transform: Transform,
|
|
|
|
/// The progress of the cube move in percentage points
|
|
progress: u16,
|
|
|
|
/// Whether the cube is currently in motion; allows motion to be paused
|
|
in_motion: bool,
|
|
}
|
|
|
|
#[derive(Component)]
|
|
struct RandomAxes(Vec3, Vec3);
|
|
|
|
#[derive(Component)]
|
|
struct Instructions;
|
|
|
|
#[derive(Resource)]
|
|
struct MousePressed(bool);
|
|
|
|
#[derive(Resource)]
|
|
struct SeededRng(ChaCha8Rng);
|
|
|
|
// Setup
|
|
|
|
fn setup(
|
|
mut commands: Commands,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
) {
|
|
// We're seeding the PRNG here to make this example deterministic for testing purposes.
|
|
// This isn't strictly required in practical use unless you need your app to be deterministic.
|
|
let mut seeded_rng = ChaCha8Rng::seed_from_u64(19878367467712);
|
|
|
|
// A camera looking at the origin
|
|
commands.spawn(Camera3dBundle {
|
|
transform: Transform::from_xyz(3., 2.5, 4.).looking_at(Vec3::ZERO, Vec3::Y),
|
|
..default()
|
|
});
|
|
|
|
// A plane that we can sit on top of
|
|
commands.spawn(PbrBundle {
|
|
transform: Transform::from_xyz(0., -2., 0.),
|
|
mesh: meshes.add(Plane3d::default().mesh().size(100.0, 100.0)),
|
|
material: materials.add(Color::srgb(0.3, 0.5, 0.3)),
|
|
..default()
|
|
});
|
|
|
|
// A light source
|
|
commands.spawn(PointLightBundle {
|
|
point_light: PointLight {
|
|
shadows_enabled: true,
|
|
..default()
|
|
},
|
|
transform: Transform::from_xyz(4.0, 7.0, -4.0),
|
|
..default()
|
|
});
|
|
|
|
// Initialize random axes
|
|
let first = random_direction(&mut seeded_rng);
|
|
let second = random_direction(&mut seeded_rng);
|
|
commands.spawn(RandomAxes(first, second));
|
|
|
|
// Finally, our cube that is going to rotate
|
|
commands.spawn((
|
|
PbrBundle {
|
|
mesh: meshes.add(Cuboid::new(1.0, 1.0, 1.0)),
|
|
material: materials.add(Color::srgb(0.5, 0.5, 0.5)),
|
|
..default()
|
|
},
|
|
Cube {
|
|
initial_transform: Transform::IDENTITY,
|
|
target_transform: random_axes_target_alignment(&RandomAxes(first, second)),
|
|
..default()
|
|
},
|
|
));
|
|
|
|
// Instructions for the example
|
|
commands.spawn((
|
|
TextBundle::from_section(
|
|
"The bright red axis is the primary alignment axis, and it will always be\n\
|
|
made to coincide with the primary target direction (white) exactly.\n\
|
|
The fainter red axis is the secondary alignment axis, and it is made to\n\
|
|
line up with the secondary target direction (gray) as closely as possible.\n\
|
|
Press 'R' to generate random target directions.\n\
|
|
Press 'T' to align the cube to those directions.\n\
|
|
Click and drag the mouse to rotate the camera.\n\
|
|
Press 'H' to hide/show these instructions.",
|
|
TextStyle {
|
|
font_size: 20.,
|
|
..default()
|
|
},
|
|
)
|
|
.with_style(Style {
|
|
position_type: PositionType::Absolute,
|
|
top: Val::Px(12.0),
|
|
left: Val::Px(12.0),
|
|
..default()
|
|
}),
|
|
Instructions,
|
|
));
|
|
|
|
commands.insert_resource(MousePressed(false));
|
|
commands.insert_resource(SeededRng(seeded_rng));
|
|
}
|
|
|
|
// Update systems
|
|
|
|
// Draw the main and secondary axes on the rotating cube
|
|
fn draw_cube_axes(mut gizmos: Gizmos, query: Query<&Transform, With<Cube>>) {
|
|
let cube_transform = query.single();
|
|
|
|
// Local X-axis arrow
|
|
let x_ends = arrow_ends(cube_transform, Vec3::X, 1.5);
|
|
gizmos.arrow(x_ends.0, x_ends.1, RED);
|
|
|
|
// local Y-axis arrow
|
|
let y_ends = arrow_ends(cube_transform, Vec3::Y, 1.5);
|
|
gizmos.arrow(y_ends.0, y_ends.1, Color::srgb(0.65, 0., 0.));
|
|
}
|
|
|
|
// Draw the randomly generated axes
|
|
fn draw_random_axes(mut gizmos: Gizmos, query: Query<&RandomAxes>) {
|
|
let RandomAxes(v1, v2) = query.single();
|
|
gizmos.arrow(Vec3::ZERO, 1.5 * *v1, WHITE);
|
|
gizmos.arrow(Vec3::ZERO, 1.5 * *v2, GRAY);
|
|
}
|
|
|
|
// Actually update the cube's transform according to its initial source and target
|
|
fn rotate_cube(mut cube: Query<(&mut Cube, &mut Transform)>) {
|
|
let (mut cube, mut cube_transform) = cube.single_mut();
|
|
|
|
if !cube.in_motion {
|
|
return;
|
|
}
|
|
|
|
let start = cube.initial_transform.rotation;
|
|
let end = cube.target_transform.rotation;
|
|
|
|
let p: f32 = cube.progress.into();
|
|
let t = p / 100.;
|
|
|
|
*cube_transform = Transform::from_rotation(start.slerp(end, t));
|
|
|
|
if cube.progress == 100 {
|
|
cube.in_motion = false;
|
|
} else {
|
|
cube.progress += 1;
|
|
}
|
|
}
|
|
|
|
// Handle user inputs from the keyboard for dynamically altering the scenario
|
|
fn handle_keypress(
|
|
mut cube: Query<(&mut Cube, &Transform)>,
|
|
mut random_axes: Query<&mut RandomAxes>,
|
|
mut instructions: Query<&mut Visibility, With<Instructions>>,
|
|
keyboard: Res<ButtonInput<KeyCode>>,
|
|
mut seeded_rng: ResMut<SeededRng>,
|
|
) {
|
|
let (mut cube, cube_transform) = cube.single_mut();
|
|
let mut random_axes = random_axes.single_mut();
|
|
|
|
if keyboard.just_pressed(KeyCode::KeyR) {
|
|
// Randomize the target axes
|
|
let first = random_direction(&mut seeded_rng.0);
|
|
let second = random_direction(&mut seeded_rng.0);
|
|
*random_axes = RandomAxes(first, second);
|
|
|
|
// Stop the cube and set it up to transform from its present orientation to the new one
|
|
cube.in_motion = false;
|
|
cube.initial_transform = *cube_transform;
|
|
cube.target_transform = random_axes_target_alignment(&random_axes);
|
|
cube.progress = 0;
|
|
}
|
|
|
|
if keyboard.just_pressed(KeyCode::KeyT) {
|
|
cube.in_motion ^= true;
|
|
}
|
|
|
|
if keyboard.just_pressed(KeyCode::KeyH) {
|
|
let mut instructions_viz = instructions.single_mut();
|
|
if *instructions_viz == Visibility::Hidden {
|
|
*instructions_viz = Visibility::Visible;
|
|
} else {
|
|
*instructions_viz = Visibility::Hidden;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle user mouse input for panning the camera around
|
|
fn handle_mouse(
|
|
mut button_events: EventReader<MouseButtonInput>,
|
|
mut motion_events: EventReader<MouseMotion>,
|
|
mut camera: Query<&mut Transform, With<Camera>>,
|
|
mut mouse_pressed: ResMut<MousePressed>,
|
|
) {
|
|
// Store left-pressed state in the MousePressed resource
|
|
for button_event in button_events.read() {
|
|
if button_event.button != MouseButton::Left {
|
|
continue;
|
|
}
|
|
*mouse_pressed = MousePressed(button_event.state.is_pressed());
|
|
}
|
|
|
|
// If the mouse is not pressed, just ignore motion events
|
|
if !mouse_pressed.0 {
|
|
return;
|
|
}
|
|
let displacement = motion_events
|
|
.read()
|
|
.fold(0., |acc, mouse_motion| acc + mouse_motion.delta.x);
|
|
let mut camera_transform = camera.single_mut();
|
|
camera_transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(-displacement / 75.));
|
|
}
|
|
|
|
// Helper functions (i.e. non-system functions)
|
|
|
|
fn arrow_ends(transform: &Transform, axis: Vec3, length: f32) -> (Vec3, Vec3) {
|
|
let local_vector = length * (transform.rotation * axis);
|
|
(transform.translation, transform.translation + local_vector)
|
|
}
|
|
|
|
fn random_direction(rng: &mut impl Rng) -> Vec3 {
|
|
let height = rng.gen::<f32>() * 2. - 1.;
|
|
let theta = rng.gen::<f32>() * 2. * PI;
|
|
|
|
build_direction(height, theta)
|
|
}
|
|
|
|
fn build_direction(height: f32, theta: f32) -> Vec3 {
|
|
let z = height;
|
|
let m = f32::acos(z).sin();
|
|
let x = theta.cos() * m;
|
|
let y = theta.sin() * m;
|
|
|
|
Vec3::new(x, y, z)
|
|
}
|
|
|
|
// This is where `Transform::align` is actually used!
|
|
// Note that the choice of `Vec3::X` and `Vec3::Y` here matches the use of those in `draw_cube_axes`.
|
|
fn random_axes_target_alignment(random_axes: &RandomAxes) -> Transform {
|
|
let RandomAxes(first, second) = random_axes;
|
|
Transform::IDENTITY.aligned_by(Vec3::X, *first, Vec3::Y, *second)
|
|
}
|