mirror of
https://github.com/bevyengine/bevy
synced 2024-11-23 05:03:47 +00:00
9e450f2827
# Objective - Fixes #3970 - To support Bevy's shader abstraction(shader defs, shader imports and hot shader reloading) for compute shaders, I have followed carts advice and change the `PipelinenCache` to accommodate both compute and render pipelines. ## Solution - renamed `RenderPipelineCache` to `PipelineCache` - Cached Pipelines are now represented by an enum (render, compute) - split the `SpecializedPipelines` into `SpecializedRenderPipelines` and `SpecializedComputePipelines` - updated the game of life example ## Open Questions - should `SpecializedRenderPipelines` and `SpecializedComputePipelines` be merged and how would we do that? - should the `get_render_pipeline` and `get_compute_pipeline` methods be merged? - is pipeline specialization for different entry points a good pattern Co-authored-by: Kurt Kühnert <51823519+Ku95@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
346 lines
13 KiB
Rust
346 lines
13 KiB
Rust
use bevy::{
|
|
core::FloatOrd,
|
|
core_pipeline::Transparent2d,
|
|
prelude::*,
|
|
reflect::TypeUuid,
|
|
render::{
|
|
mesh::Indices,
|
|
render_asset::RenderAssets,
|
|
render_phase::{AddRenderCommand, DrawFunctions, RenderPhase, SetItemPipeline},
|
|
render_resource::{
|
|
BlendState, ColorTargetState, ColorWrites, Face, FragmentState, FrontFace,
|
|
MultisampleState, PipelineCache, PolygonMode, PrimitiveState, PrimitiveTopology,
|
|
RenderPipelineDescriptor, SpecializedRenderPipeline, SpecializedRenderPipelines,
|
|
TextureFormat, VertexBufferLayout, VertexFormat, VertexState, VertexStepMode,
|
|
},
|
|
texture::BevyDefault,
|
|
view::VisibleEntities,
|
|
RenderApp, RenderStage,
|
|
},
|
|
sprite::{
|
|
DrawMesh2d, Mesh2dHandle, Mesh2dPipeline, Mesh2dPipelineKey, Mesh2dUniform,
|
|
SetMesh2dBindGroup, SetMesh2dViewBindGroup,
|
|
},
|
|
};
|
|
|
|
/// This example shows how to manually render 2d items using "mid level render apis" with a custom pipeline for 2d meshes
|
|
/// It doesn't use the [`Material2d`] abstraction, but changes the vertex buffer to include vertex color
|
|
/// Check out the "mesh2d" example for simpler / higher level 2d meshes
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_plugin(ColoredMesh2dPlugin)
|
|
.add_startup_system(star)
|
|
.run();
|
|
}
|
|
|
|
fn star(
|
|
mut commands: Commands,
|
|
// We will add a new Mesh for the star being created
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
) {
|
|
// Let's define the mesh for the object we want to draw: a nice star.
|
|
// We will specify here what kind of topology is used to define the mesh,
|
|
// that is, how triangles are built from the vertices. We will use a
|
|
// triangle list, meaning that each vertex of the triangle has to be
|
|
// specified.
|
|
let mut star = Mesh::new(PrimitiveTopology::TriangleList);
|
|
|
|
// Vertices need to have a position attribute. We will use the following
|
|
// vertices (I hope you can spot the star in the schema).
|
|
//
|
|
// 1
|
|
//
|
|
// 10 2
|
|
// 9 0 3
|
|
// 8 4
|
|
// 6
|
|
// 7 5
|
|
//
|
|
// These vertices are specificed in 3D space.
|
|
let mut v_pos = vec![[0.0, 0.0, 0.0]];
|
|
for i in 0..10 {
|
|
// Angle of each vertex is 1/10 of TAU, plus PI/2 for positioning vertex 0
|
|
let a = std::f32::consts::FRAC_PI_2 - i as f32 * std::f32::consts::TAU / 10.0;
|
|
// Radius of internal vertices (2, 4, 6, 8, 10) is 100, it's 200 for external
|
|
let r = (1 - i % 2) as f32 * 100.0 + 100.0;
|
|
// Add the vertex coordinates
|
|
v_pos.push([r * a.cos(), r * a.sin(), 0.0]);
|
|
}
|
|
// Set the position attribute
|
|
star.insert_attribute(Mesh::ATTRIBUTE_POSITION, v_pos);
|
|
// And a RGB color attribute as well
|
|
let mut v_color: Vec<u32> = vec![Color::BLACK.as_linear_rgba_u32()];
|
|
v_color.extend_from_slice(&[Color::YELLOW.as_linear_rgba_u32(); 10]);
|
|
star.insert_attribute(Mesh::ATTRIBUTE_COLOR, v_color);
|
|
|
|
// Now, we specify the indices of the vertex that are going to compose the
|
|
// triangles in our star. Vertices in triangles have to be specified in CCW
|
|
// winding (that will be the front face, colored). Since we are using
|
|
// triangle list, we will specify each triangle as 3 vertices
|
|
// First triangle: 0, 2, 1
|
|
// Second triangle: 0, 3, 2
|
|
// Third triangle: 0, 4, 3
|
|
// etc
|
|
// Last triangle: 0, 1, 10
|
|
let mut indices = vec![0, 1, 10];
|
|
for i in 2..=10 {
|
|
indices.extend_from_slice(&[0, i, i - 1]);
|
|
}
|
|
star.set_indices(Some(Indices::U32(indices)));
|
|
|
|
// We can now spawn the entities for the star and the camera
|
|
commands.spawn_bundle((
|
|
// We use a marker component to identify the custom colored meshes
|
|
ColoredMesh2d::default(),
|
|
// The `Handle<Mesh>` needs to be wrapped in a `Mesh2dHandle` to use 2d rendering instead of 3d
|
|
Mesh2dHandle(meshes.add(star)),
|
|
// These other components are needed for 2d meshes to be rendered
|
|
Transform::default(),
|
|
GlobalTransform::default(),
|
|
Visibility::default(),
|
|
ComputedVisibility::default(),
|
|
));
|
|
commands
|
|
// And use an orthographic projection
|
|
.spawn_bundle(OrthographicCameraBundle::new_2d());
|
|
}
|
|
|
|
/// A marker component for colored 2d meshes
|
|
#[derive(Component, Default)]
|
|
pub struct ColoredMesh2d;
|
|
|
|
/// Custom pipeline for 2d meshes with vertex colors
|
|
pub struct ColoredMesh2dPipeline {
|
|
/// this pipeline wraps the standard [`Mesh2dPipeline`]
|
|
mesh2d_pipeline: Mesh2dPipeline,
|
|
}
|
|
|
|
impl FromWorld for ColoredMesh2dPipeline {
|
|
fn from_world(world: &mut World) -> Self {
|
|
Self {
|
|
mesh2d_pipeline: Mesh2dPipeline::from_world(world),
|
|
}
|
|
}
|
|
}
|
|
|
|
// We implement `SpecializedPipeline` to customize the default rendering from `Mesh2dPipeline`
|
|
impl SpecializedRenderPipeline for ColoredMesh2dPipeline {
|
|
type Key = Mesh2dPipelineKey;
|
|
|
|
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
|
|
// Customize how to store the meshes' vertex attributes in the vertex buffer
|
|
// Our meshes only have position and color
|
|
let formats = vec![
|
|
// Position
|
|
VertexFormat::Float32x3,
|
|
// Color
|
|
VertexFormat::Uint32,
|
|
];
|
|
|
|
let vertex_layout =
|
|
VertexBufferLayout::from_vertex_formats(VertexStepMode::Vertex, formats);
|
|
|
|
RenderPipelineDescriptor {
|
|
vertex: VertexState {
|
|
// Use our custom shader
|
|
shader: COLORED_MESH2D_SHADER_HANDLE.typed::<Shader>(),
|
|
entry_point: "vertex".into(),
|
|
shader_defs: Vec::new(),
|
|
// Use our custom vertex buffer
|
|
buffers: vec![vertex_layout],
|
|
},
|
|
fragment: Some(FragmentState {
|
|
// Use our custom shader
|
|
shader: COLORED_MESH2D_SHADER_HANDLE.typed::<Shader>(),
|
|
shader_defs: Vec::new(),
|
|
entry_point: "fragment".into(),
|
|
targets: vec![ColorTargetState {
|
|
format: TextureFormat::bevy_default(),
|
|
blend: Some(BlendState::ALPHA_BLENDING),
|
|
write_mask: ColorWrites::ALL,
|
|
}],
|
|
}),
|
|
// Use the two standard uniforms for 2d meshes
|
|
layout: Some(vec![
|
|
// Bind group 0 is the view uniform
|
|
self.mesh2d_pipeline.view_layout.clone(),
|
|
// Bind group 1 is the mesh uniform
|
|
self.mesh2d_pipeline.mesh_layout.clone(),
|
|
]),
|
|
primitive: PrimitiveState {
|
|
front_face: FrontFace::Ccw,
|
|
cull_mode: Some(Face::Back),
|
|
unclipped_depth: false,
|
|
polygon_mode: PolygonMode::Fill,
|
|
conservative: false,
|
|
topology: key.primitive_topology(),
|
|
strip_index_format: None,
|
|
},
|
|
depth_stencil: None,
|
|
multisample: MultisampleState {
|
|
count: key.msaa_samples(),
|
|
mask: !0,
|
|
alpha_to_coverage_enabled: false,
|
|
},
|
|
label: Some("colored_mesh2d_pipeline".into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
// This specifies how to render a colored 2d mesh
|
|
type DrawColoredMesh2d = (
|
|
// Set the pipeline
|
|
SetItemPipeline,
|
|
// Set the view uniform as bind group 0
|
|
SetMesh2dViewBindGroup<0>,
|
|
// Set the mesh uniform as bind group 1
|
|
SetMesh2dBindGroup<1>,
|
|
// Draw the mesh
|
|
DrawMesh2d,
|
|
);
|
|
|
|
// The custom shader can be inline like here, included from another file at build time
|
|
// using `include_str!()`, or loaded like any other asset with `asset_server.load()`.
|
|
const COLORED_MESH2D_SHADER: &str = r"
|
|
// Import the standard 2d mesh uniforms and set their bind groups
|
|
#import bevy_sprite::mesh2d_view_bind_group
|
|
[[group(0), binding(0)]]
|
|
var<uniform> view: View;
|
|
#import bevy_sprite::mesh2d_struct
|
|
[[group(1), binding(0)]]
|
|
var<uniform> mesh: Mesh2d;
|
|
|
|
// The structure of the vertex buffer is as specified in `specialize()`
|
|
struct Vertex {
|
|
[[location(0)]] position: vec3<f32>;
|
|
[[location(1)]] color: u32;
|
|
};
|
|
|
|
struct VertexOutput {
|
|
// The vertex shader must set the on-screen position of the vertex
|
|
[[builtin(position)]] clip_position: vec4<f32>;
|
|
// We pass the vertex color to the fragment shader in location 0
|
|
[[location(0)]] color: vec4<f32>;
|
|
};
|
|
|
|
/// Entry point for the vertex shader
|
|
[[stage(vertex)]]
|
|
fn vertex(vertex: Vertex) -> VertexOutput {
|
|
var out: VertexOutput;
|
|
// Project the world position of the mesh into screen position
|
|
out.clip_position = view.view_proj * mesh.model * vec4<f32>(vertex.position, 1.0);
|
|
// Unpack the `u32` from the vertex buffer into the `vec4<f32>` used by the fragment shader
|
|
out.color = vec4<f32>((vec4<u32>(vertex.color) >> vec4<u32>(0u, 8u, 16u, 24u)) & vec4<u32>(255u)) / 255.0;
|
|
return out;
|
|
}
|
|
|
|
// The input of the fragment shader must correspond to the output of the vertex shader for all `location`s
|
|
struct FragmentInput {
|
|
// The color is interpolated between vertices by default
|
|
[[location(0)]] color: vec4<f32>;
|
|
};
|
|
|
|
/// Entry point for the fragment shader
|
|
[[stage(fragment)]]
|
|
fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
|
|
return in.color;
|
|
}
|
|
";
|
|
|
|
/// Plugin that renders [`ColoredMesh2d`]s
|
|
pub struct ColoredMesh2dPlugin;
|
|
|
|
/// Handle to the custom shader with a unique random ID
|
|
pub const COLORED_MESH2D_SHADER_HANDLE: HandleUntyped =
|
|
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 13828845428412094821);
|
|
|
|
impl Plugin for ColoredMesh2dPlugin {
|
|
fn build(&self, app: &mut App) {
|
|
// Load our custom shader
|
|
let mut shaders = app.world.resource_mut::<Assets<Shader>>();
|
|
shaders.set_untracked(
|
|
COLORED_MESH2D_SHADER_HANDLE,
|
|
Shader::from_wgsl(COLORED_MESH2D_SHADER),
|
|
);
|
|
|
|
// Register our custom draw function and pipeline, and add our render systems
|
|
let render_app = app.get_sub_app_mut(RenderApp).unwrap();
|
|
render_app
|
|
.add_render_command::<Transparent2d, DrawColoredMesh2d>()
|
|
.init_resource::<ColoredMesh2dPipeline>()
|
|
.init_resource::<SpecializedRenderPipelines<ColoredMesh2dPipeline>>()
|
|
.add_system_to_stage(RenderStage::Extract, extract_colored_mesh2d)
|
|
.add_system_to_stage(RenderStage::Queue, queue_colored_mesh2d);
|
|
}
|
|
}
|
|
|
|
/// Extract the [`ColoredMesh2d`] marker component into the render app
|
|
pub fn extract_colored_mesh2d(
|
|
mut commands: Commands,
|
|
mut previous_len: Local<usize>,
|
|
query: Query<(Entity, &ComputedVisibility), With<ColoredMesh2d>>,
|
|
) {
|
|
let mut values = Vec::with_capacity(*previous_len);
|
|
for (entity, computed_visibility) in query.iter() {
|
|
if !computed_visibility.is_visible {
|
|
continue;
|
|
}
|
|
values.push((entity, (ColoredMesh2d,)));
|
|
}
|
|
*previous_len = values.len();
|
|
commands.insert_or_spawn_batch(values);
|
|
}
|
|
|
|
/// Queue the 2d meshes marked with [`ColoredMesh2d`] using our custom pipeline and draw function
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub fn queue_colored_mesh2d(
|
|
transparent_draw_functions: Res<DrawFunctions<Transparent2d>>,
|
|
colored_mesh2d_pipeline: Res<ColoredMesh2dPipeline>,
|
|
mut pipelines: ResMut<SpecializedRenderPipelines<ColoredMesh2dPipeline>>,
|
|
mut pipeline_cache: ResMut<PipelineCache>,
|
|
msaa: Res<Msaa>,
|
|
render_meshes: Res<RenderAssets<Mesh>>,
|
|
colored_mesh2d: Query<(&Mesh2dHandle, &Mesh2dUniform), With<ColoredMesh2d>>,
|
|
mut views: Query<(&VisibleEntities, &mut RenderPhase<Transparent2d>)>,
|
|
) {
|
|
if colored_mesh2d.is_empty() {
|
|
return;
|
|
}
|
|
// Iterate each view (a camera is a view)
|
|
for (visible_entities, mut transparent_phase) in views.iter_mut() {
|
|
let draw_colored_mesh2d = transparent_draw_functions
|
|
.read()
|
|
.get_id::<DrawColoredMesh2d>()
|
|
.unwrap();
|
|
|
|
let mesh_key = Mesh2dPipelineKey::from_msaa_samples(msaa.samples);
|
|
|
|
// Queue all entities visible to that view
|
|
for visible_entity in &visible_entities.entities {
|
|
if let Ok((mesh2d_handle, mesh2d_uniform)) = colored_mesh2d.get(*visible_entity) {
|
|
// Get our specialized pipeline
|
|
let mut mesh2d_key = mesh_key;
|
|
if let Some(mesh) = render_meshes.get(&mesh2d_handle.0) {
|
|
mesh2d_key |=
|
|
Mesh2dPipelineKey::from_primitive_topology(mesh.primitive_topology);
|
|
}
|
|
|
|
let pipeline_id =
|
|
pipelines.specialize(&mut pipeline_cache, &colored_mesh2d_pipeline, mesh2d_key);
|
|
|
|
let mesh_z = mesh2d_uniform.transform.w_axis.z;
|
|
transparent_phase.add(Transparent2d {
|
|
entity: *visible_entity,
|
|
draw_function: draw_colored_mesh2d,
|
|
pipeline: pipeline_id,
|
|
// The 2d render items are sorted according to their z value before rendering,
|
|
// in order to get correct transparency
|
|
sort_key: FloatOrd(mesh_z),
|
|
// This material is not batched
|
|
batch_range: None,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|