bevy/examples/gizmos/axes.rs
Joona Aalto 54006b107b
Migrate meshes and materials to required components (#15524)
# Objective

A big step in the migration to required components: meshes and
materials!

## Solution

As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):

- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:

![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)

![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)

Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.

## Testing

I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!

## Implementation Notes

- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.

---

## Migration Guide

Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.

Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.

The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.

---------

Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00

220 lines
6.7 KiB
Rust

//! This example demonstrates the implementation and behavior of the axes gizmo.
use bevy::{prelude::*, render::primitives::Aabb};
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use std::f32::consts::PI;
const TRANSITION_DURATION: f32 = 2.0;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, (move_cubes, draw_axes).chain())
.run();
}
/// The `ShowAxes` component is attached to an entity to get the `draw_axes` system to
/// display axes according to its Transform component.
#[derive(Component)]
struct ShowAxes;
/// The `TransformTracking` component keeps track of the data we need to interpolate
/// between two transforms in our example.
#[derive(Component)]
struct TransformTracking {
/// The initial transform of the cube during the move
initial_transform: Transform,
/// The target transform of the cube during the move
target_transform: Transform,
/// The progress of the cube during the move in seconds
progress: f32,
}
#[derive(Resource)]
struct SeededRng(ChaCha8Rng);
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut rng = ChaCha8Rng::seed_from_u64(19878367467713);
// Lights...
commands.spawn((
PointLight {
shadows_enabled: true,
..default()
},
Transform::from_xyz(2., 6., 0.),
));
// Camera...
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0., 1.5, -8.).looking_at(Vec3::new(0., -0.5, 0.), Vec3::Y),
..default()
});
// Action! (Our cubes that are going to move)
commands.spawn((
Mesh3d(meshes.add(Cuboid::new(1., 1., 1.))),
MeshMaterial3d(materials.add(Color::srgb(0.8, 0.7, 0.6))),
ShowAxes,
TransformTracking {
initial_transform: default(),
target_transform: random_transform(&mut rng),
progress: 0.0,
},
));
commands.spawn((
Mesh3d(meshes.add(Cuboid::new(0.5, 0.5, 0.5))),
MeshMaterial3d(materials.add(Color::srgb(0.6, 0.7, 0.8))),
ShowAxes,
TransformTracking {
initial_transform: default(),
target_transform: random_transform(&mut rng),
progress: 0.0,
},
));
// A plane to give a sense of place
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(20., 20.))),
MeshMaterial3d(materials.add(Color::srgb(0.1, 0.1, 0.1))),
Transform::from_xyz(0., -2., 0.),
));
commands.insert_resource(SeededRng(rng));
}
// This system draws the axes based on the cube's transform, with length based on the size of
// the entity's axis-aligned bounding box (AABB).
fn draw_axes(mut gizmos: Gizmos, query: Query<(&Transform, &Aabb), With<ShowAxes>>) {
for (&transform, &aabb) in &query {
let length = aabb.half_extents.length();
gizmos.axes(transform, length);
}
}
// This system changes the cubes' transforms to interpolate between random transforms
fn move_cubes(
mut query: Query<(&mut Transform, &mut TransformTracking)>,
time: Res<Time>,
mut rng: ResMut<SeededRng>,
) {
for (mut transform, mut tracking) in &mut query {
*transform = interpolate_transforms(
tracking.initial_transform,
tracking.target_transform,
tracking.progress / TRANSITION_DURATION,
);
if tracking.progress < TRANSITION_DURATION {
tracking.progress += time.delta_seconds();
} else {
tracking.initial_transform = *transform;
tracking.target_transform = random_transform(&mut rng.0);
tracking.progress = 0.0;
}
}
}
// Helper functions for random transforms and interpolation:
const TRANSLATION_BOUND_LOWER_X: f32 = -5.;
const TRANSLATION_BOUND_UPPER_X: f32 = 5.;
const TRANSLATION_BOUND_LOWER_Y: f32 = -1.;
const TRANSLATION_BOUND_UPPER_Y: f32 = 1.;
const TRANSLATION_BOUND_LOWER_Z: f32 = -2.;
const TRANSLATION_BOUND_UPPER_Z: f32 = 6.;
const SCALING_BOUND_LOWER_LOG: f32 = -1.2;
const SCALING_BOUND_UPPER_LOG: f32 = 1.2;
fn random_transform(rng: &mut impl Rng) -> Transform {
Transform {
translation: random_translation(rng),
rotation: random_rotation(rng),
scale: random_scale(rng),
}
}
fn random_translation(rng: &mut impl Rng) -> Vec3 {
let x = rng.gen::<f32>() * (TRANSLATION_BOUND_UPPER_X - TRANSLATION_BOUND_LOWER_X)
+ TRANSLATION_BOUND_LOWER_X;
let y = rng.gen::<f32>() * (TRANSLATION_BOUND_UPPER_Y - TRANSLATION_BOUND_LOWER_Y)
+ TRANSLATION_BOUND_LOWER_Y;
let z = rng.gen::<f32>() * (TRANSLATION_BOUND_UPPER_Z - TRANSLATION_BOUND_LOWER_Z)
+ TRANSLATION_BOUND_LOWER_Z;
Vec3::new(x, y, z)
}
fn random_scale(rng: &mut impl Rng) -> Vec3 {
let x_factor_log = rng.gen::<f32>() * (SCALING_BOUND_UPPER_LOG - SCALING_BOUND_LOWER_LOG)
+ SCALING_BOUND_LOWER_LOG;
let y_factor_log = rng.gen::<f32>() * (SCALING_BOUND_UPPER_LOG - SCALING_BOUND_LOWER_LOG)
+ SCALING_BOUND_LOWER_LOG;
let z_factor_log = rng.gen::<f32>() * (SCALING_BOUND_UPPER_LOG - SCALING_BOUND_LOWER_LOG)
+ SCALING_BOUND_LOWER_LOG;
Vec3::new(
ops::exp2(x_factor_log),
ops::exp2(y_factor_log),
ops::exp2(z_factor_log),
)
}
fn elerp(v1: Vec3, v2: Vec3, t: f32) -> Vec3 {
let x_factor_log = (1. - t) * ops::log2(v1.x) + t * ops::log2(v2.x);
let y_factor_log = (1. - t) * ops::log2(v1.y) + t * ops::log2(v2.y);
let z_factor_log = (1. - t) * ops::log2(v1.z) + t * ops::log2(v2.z);
Vec3::new(
ops::exp2(x_factor_log),
ops::exp2(y_factor_log),
ops::exp2(z_factor_log),
)
}
fn random_rotation(rng: &mut impl Rng) -> Quat {
let dir = random_direction(rng);
let angle = rng.gen::<f32>() * 2. * PI;
Quat::from_axis_angle(dir, angle)
}
fn random_direction(rng: &mut impl Rng) -> Vec3 {
let height = rng.gen::<f32>() * 2. - 1.;
let theta = rng.gen::<f32>() * 2. * PI;
build_direction(height, theta)
}
fn build_direction(height: f32, theta: f32) -> Vec3 {
let z = height;
let m = ops::sin(ops::acos(z));
let x = ops::cos(theta) * m;
let y = ops::sin(theta) * m;
Vec3::new(x, y, z)
}
fn interpolate_transforms(t1: Transform, t2: Transform, t: f32) -> Transform {
let translation = t1.translation.lerp(t2.translation, t);
let rotation = t1.rotation.slerp(t2.rotation, t);
let scale = elerp(t1.scale, t2.scale, t);
Transform {
translation,
rotation,
scale,
}
}