mirror of
https://github.com/bevyengine/bevy
synced 2024-11-29 16:10:19 +00:00
54006b107b
# Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
115 lines
4.4 KiB
Rust
115 lines
4.4 KiB
Rust
//! Demonstrates how to use transparency in 3D.
|
|
//! Shows the effects of different blend modes.
|
|
//! The `fade_transparency` system smoothly changes the transparency over time.
|
|
|
|
use bevy::{math::ops, prelude::*};
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_systems(Startup, setup)
|
|
.add_systems(Update, fade_transparency)
|
|
.run();
|
|
}
|
|
|
|
fn setup(
|
|
mut commands: Commands,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
) {
|
|
// Opaque plane, uses `alpha_mode: Opaque` by default
|
|
commands.spawn((
|
|
Mesh3d(meshes.add(Plane3d::default().mesh().size(6.0, 6.0))),
|
|
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
|
|
));
|
|
|
|
// Transparent sphere, uses `alpha_mode: Mask(f32)`
|
|
commands.spawn((
|
|
Mesh3d(meshes.add(Sphere::new(0.5).mesh().ico(3).unwrap())),
|
|
MeshMaterial3d(materials.add(StandardMaterial {
|
|
// Alpha channel of the color controls transparency.
|
|
// We set it to 0.0 here, because it will be changed over time in the
|
|
// `fade_transparency` function.
|
|
// Note that the transparency has no effect on the objects shadow.
|
|
base_color: Color::srgba(0.2, 0.7, 0.1, 0.0),
|
|
// Mask sets a cutoff for transparency. Alpha values below are fully transparent,
|
|
// alpha values above are fully opaque.
|
|
alpha_mode: AlphaMode::Mask(0.5),
|
|
..default()
|
|
})),
|
|
Transform::from_xyz(1.0, 0.5, -1.5),
|
|
));
|
|
|
|
// Transparent unlit sphere, uses `alpha_mode: Mask(f32)`
|
|
commands.spawn((
|
|
Mesh3d(meshes.add(Sphere::new(0.5).mesh().ico(3).unwrap())),
|
|
MeshMaterial3d(materials.add(StandardMaterial {
|
|
base_color: Color::srgba(0.2, 0.7, 0.1, 0.0),
|
|
alpha_mode: AlphaMode::Mask(0.5),
|
|
unlit: true,
|
|
..default()
|
|
})),
|
|
Transform::from_xyz(-1.0, 0.5, -1.5),
|
|
));
|
|
|
|
// Transparent cube, uses `alpha_mode: Blend`
|
|
commands.spawn((
|
|
Mesh3d(meshes.add(Cuboid::default())),
|
|
// Notice how there is no need to set the `alpha_mode` explicitly here.
|
|
// When converting a color to a material using `into()`, the alpha mode is
|
|
// automatically set to `Blend` if the alpha channel is anything lower than 1.0.
|
|
MeshMaterial3d(materials.add(Color::srgba(0.5, 0.5, 1.0, 0.0))),
|
|
Transform::from_xyz(0.0, 0.5, 0.0),
|
|
));
|
|
|
|
// Transparent cube, uses `alpha_mode: AlphaToCoverage`
|
|
commands.spawn((
|
|
Mesh3d(meshes.add(Cuboid::default())),
|
|
MeshMaterial3d(materials.add(StandardMaterial {
|
|
base_color: Color::srgba(0.5, 1.0, 0.5, 0.0),
|
|
alpha_mode: AlphaMode::AlphaToCoverage,
|
|
..default()
|
|
})),
|
|
Transform::from_xyz(-1.5, 0.5, 0.0),
|
|
));
|
|
|
|
// Opaque sphere
|
|
commands.spawn((
|
|
Mesh3d(meshes.add(Sphere::new(0.5).mesh().ico(3).unwrap())),
|
|
MeshMaterial3d(materials.add(Color::srgb(0.7, 0.2, 0.1))),
|
|
Transform::from_xyz(0.0, 0.5, -1.5),
|
|
));
|
|
|
|
// Light
|
|
commands.spawn((
|
|
PointLight {
|
|
shadows_enabled: true,
|
|
..default()
|
|
},
|
|
Transform::from_xyz(4.0, 8.0, 4.0),
|
|
));
|
|
|
|
// Camera
|
|
commands.spawn(Camera3dBundle {
|
|
transform: Transform::from_xyz(-2.0, 3.0, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
|
|
..default()
|
|
});
|
|
}
|
|
|
|
/// Fades the alpha channel of all materials between 0 and 1 over time.
|
|
/// Each blend mode responds differently to this:
|
|
/// - [`Opaque`](AlphaMode::Opaque): Ignores alpha channel altogether, these materials stay completely opaque.
|
|
/// - [`Mask(f32)`](AlphaMode::Mask): Object appears when the alpha value goes above the mask's threshold, disappears
|
|
/// when the alpha value goes back below the threshold.
|
|
/// - [`Blend`](AlphaMode::Blend): Object fades in and out smoothly.
|
|
/// - [`AlphaToCoverage`](AlphaMode::AlphaToCoverage): Object fades in and out
|
|
/// in steps corresponding to the number of multisample antialiasing (MSAA)
|
|
/// samples in use. For example, assuming 8xMSAA, the object will be
|
|
/// completely opaque, then will be 7/8 opaque (1/8 transparent), then will be
|
|
/// 6/8 opaque, then 5/8, etc.
|
|
pub fn fade_transparency(time: Res<Time>, mut materials: ResMut<Assets<StandardMaterial>>) {
|
|
let alpha = (ops::sin(time.elapsed_seconds()) / 2.0) + 0.5;
|
|
for (_, material) in materials.iter_mut() {
|
|
material.base_color.set_alpha(alpha);
|
|
}
|
|
}
|