bevy/examples/stress_tests/many_lights.rs
Joona Aalto 0166db33f7
Deprecate shapes in bevy_render::mesh::shape (#11773)
# Objective

#11431 and #11688 implemented meshing support for Bevy's new geometric
primitives. The next step is to deprecate the shapes in
`bevy_render::mesh::shape` and to later remove them completely for 0.14.

## Solution

Deprecate the shapes and reduce code duplication by utilizing the
primitive meshing API for the old shapes where possible.

Note that some shapes have behavior that can't be exactly reproduced
with the new primitives yet:

- `Box` is more of an AABB with min/max extents
- `Plane` supports a subdivision count
- `Quad` has a `flipped` property

These types have not been changed to utilize the new primitives yet.

---

## Changelog

- Deprecated all shapes in `bevy_render::mesh::shape`
- Changed all examples to use new primitives for meshing

## Migration Guide

Bevy has previously used rendering-specific types like `UVSphere` and
`Quad` for primitive mesh shapes. These have now been deprecated to use
the geometric primitives newly introduced in version 0.13.

Some examples:

```rust
let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0));
let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0));

let before = meshes.add(shape::Quad::default());
let after = meshes.add(Rectangle::default());

let before = meshes.add(shape::Plane::from_size(5.0));
// The surface normal can now also be specified when using `new`
let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0));

let before = meshes.add(
    Mesh::try_from(shape::Icosphere {
        radius: 0.5,
        subdivisions: 5,
    })
    .unwrap(),
);
let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap());
```
2024-02-08 18:01:34 +00:00

187 lines
6.1 KiB
Rust

//! Simple benchmark to test rendering many point lights.
//! Run with `WGPU_SETTINGS_PRIO=webgl2` to restrict to uniform buffers and max 256 lights.
use std::f64::consts::PI;
use bevy::{
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
math::{DVec2, DVec3},
pbr::{ExtractedPointLight, GlobalLightMeta},
prelude::*,
render::{camera::ScalingMode, Render, RenderApp, RenderSet},
window::{PresentMode, WindowPlugin, WindowResolution},
winit::{UpdateMode, WinitSettings},
};
use rand::{thread_rng, Rng};
fn main() {
App::new()
.add_plugins((
DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
resolution: WindowResolution::new(1920.0, 1080.0)
.with_scale_factor_override(1.0),
title: "many_lights".into(),
present_mode: PresentMode::AutoNoVsync,
..default()
}),
..default()
}),
FrameTimeDiagnosticsPlugin,
LogDiagnosticsPlugin::default(),
LogVisibleLights,
))
.insert_resource(WinitSettings {
focused_mode: UpdateMode::Continuous,
unfocused_mode: UpdateMode::Continuous,
})
.add_systems(Startup, setup)
.add_systems(Update, (move_camera, print_light_count))
.run();
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
warn!(include_str!("warning_string.txt"));
const LIGHT_RADIUS: f32 = 0.3;
const LIGHT_INTENSITY: f32 = 5.0;
const RADIUS: f32 = 50.0;
const N_LIGHTS: usize = 100_000;
commands.spawn(PbrBundle {
mesh: meshes.add(Sphere::new(RADIUS).mesh().ico(9).unwrap()),
material: materials.add(Color::WHITE),
transform: Transform::from_scale(Vec3::NEG_ONE),
..default()
});
let mesh = meshes.add(Cuboid::default());
let material = materials.add(StandardMaterial {
base_color: Color::PINK,
..default()
});
// NOTE: This pattern is good for testing performance of culling as it provides roughly
// the same number of visible meshes regardless of the viewing angle.
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
let mut rng = thread_rng();
for i in 0..N_LIGHTS {
let spherical_polar_theta_phi = fibonacci_spiral_on_sphere(golden_ratio, i, N_LIGHTS);
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
commands.spawn(PointLightBundle {
point_light: PointLight {
range: LIGHT_RADIUS,
intensity: LIGHT_INTENSITY,
color: Color::hsl(rng.gen_range(0.0..360.0), 1.0, 0.5),
..default()
},
transform: Transform::from_translation((RADIUS as f64 * unit_sphere_p).as_vec3()),
..default()
});
}
// camera
match std::env::args().nth(1).as_deref() {
Some("orthographic") => commands.spawn(Camera3dBundle {
projection: OrthographicProjection {
scale: 20.0,
scaling_mode: ScalingMode::FixedHorizontal(1.0),
..default()
}
.into(),
..default()
}),
_ => commands.spawn(Camera3dBundle::default()),
};
// add one cube, the only one with strong handles
// also serves as a reference point during rotation
commands.spawn(PbrBundle {
mesh,
material,
transform: Transform {
translation: Vec3::new(0.0, RADIUS, 0.0),
scale: Vec3::splat(5.0),
..default()
},
..default()
});
}
// NOTE: This epsilon value is apparently optimal for optimizing for the average
// nearest-neighbor distance. See:
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
// for details.
const EPSILON: f64 = 0.36;
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
DVec2::new(
PI * 2. * (i as f64 / golden_ratio),
(1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
)
}
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
let (sin_theta, cos_theta) = p.x.sin_cos();
let (sin_phi, cos_phi) = p.y.sin_cos();
DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
}
// System for rotating the camera
fn move_camera(time: Res<Time>, mut camera_query: Query<&mut Transform, With<Camera>>) {
let mut camera_transform = camera_query.single_mut();
let delta = time.delta_seconds() * 0.15;
camera_transform.rotate_z(delta);
camera_transform.rotate_x(delta);
}
// System for printing the number of meshes on every tick of the timer
fn print_light_count(time: Res<Time>, mut timer: Local<PrintingTimer>, lights: Query<&PointLight>) {
timer.0.tick(time.delta());
if timer.0.just_finished() {
info!("Lights: {}", lights.iter().len());
}
}
struct LogVisibleLights;
impl Plugin for LogVisibleLights {
fn build(&self, app: &mut App) {
let Ok(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app.add_systems(Render, print_visible_light_count.in_set(RenderSet::Prepare));
}
}
// System for printing the number of meshes on every tick of the timer
fn print_visible_light_count(
time: Res<Time>,
mut timer: Local<PrintingTimer>,
visible: Query<&ExtractedPointLight>,
global_light_meta: Res<GlobalLightMeta>,
) {
timer.0.tick(time.delta());
if timer.0.just_finished() {
info!(
"Visible Lights: {}, Rendered Lights: {}",
visible.iter().len(),
global_light_meta.entity_to_index.len()
);
}
}
struct PrintingTimer(Timer);
impl Default for PrintingTimer {
fn default() -> Self {
Self(Timer::from_seconds(1.0, TimerMode::Repeating))
}
}