bevy/examples/shader/shader_instancing.rs
Joona Aalto 0166db33f7
Deprecate shapes in bevy_render::mesh::shape (#11773)
# Objective

#11431 and #11688 implemented meshing support for Bevy's new geometric
primitives. The next step is to deprecate the shapes in
`bevy_render::mesh::shape` and to later remove them completely for 0.14.

## Solution

Deprecate the shapes and reduce code duplication by utilizing the
primitive meshing API for the old shapes where possible.

Note that some shapes have behavior that can't be exactly reproduced
with the new primitives yet:

- `Box` is more of an AABB with min/max extents
- `Plane` supports a subdivision count
- `Quad` has a `flipped` property

These types have not been changed to utilize the new primitives yet.

---

## Changelog

- Deprecated all shapes in `bevy_render::mesh::shape`
- Changed all examples to use new primitives for meshing

## Migration Guide

Bevy has previously used rendering-specific types like `UVSphere` and
`Quad` for primitive mesh shapes. These have now been deprecated to use
the geometric primitives newly introduced in version 0.13.

Some examples:

```rust
let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0));
let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0));

let before = meshes.add(shape::Quad::default());
let after = meshes.add(Rectangle::default());

let before = meshes.add(shape::Plane::from_size(5.0));
// The surface normal can now also be specified when using `new`
let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0));

let before = meshes.add(
    Mesh::try_from(shape::Icosphere {
        radius: 0.5,
        subdivisions: 5,
    })
    .unwrap(),
);
let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap());
```
2024-02-08 18:01:34 +00:00

276 lines
9.2 KiB
Rust

//! A shader that renders a mesh multiple times in one draw call.
use bevy::{
core_pipeline::core_3d::Transparent3d,
ecs::{
query::QueryItem,
system::{lifetimeless::*, SystemParamItem},
},
pbr::{
MeshPipeline, MeshPipelineKey, RenderMeshInstances, SetMeshBindGroup, SetMeshViewBindGroup,
},
prelude::*,
render::{
extract_component::{ExtractComponent, ExtractComponentPlugin},
mesh::{GpuBufferInfo, MeshVertexBufferLayout},
render_asset::RenderAssets,
render_phase::{
AddRenderCommand, DrawFunctions, PhaseItem, RenderCommand, RenderCommandResult,
RenderPhase, SetItemPipeline, TrackedRenderPass,
},
render_resource::*,
renderer::RenderDevice,
view::{ExtractedView, NoFrustumCulling},
Render, RenderApp, RenderSet,
},
};
use bytemuck::{Pod, Zeroable};
fn main() {
App::new()
.add_plugins((DefaultPlugins, CustomMaterialPlugin))
.add_systems(Startup, setup)
.run();
}
fn setup(mut commands: Commands, mut meshes: ResMut<Assets<Mesh>>) {
commands.spawn((
meshes.add(Cuboid::new(0.5, 0.5, 0.5)),
SpatialBundle::INHERITED_IDENTITY,
InstanceMaterialData(
(1..=10)
.flat_map(|x| (1..=10).map(move |y| (x as f32 / 10.0, y as f32 / 10.0)))
.map(|(x, y)| InstanceData {
position: Vec3::new(x * 10.0 - 5.0, y * 10.0 - 5.0, 0.0),
scale: 1.0,
color: Color::hsla(x * 360., y, 0.5, 1.0).as_rgba_f32(),
})
.collect(),
),
// NOTE: Frustum culling is done based on the Aabb of the Mesh and the GlobalTransform.
// As the cube is at the origin, if its Aabb moves outside the view frustum, all the
// instanced cubes will be culled.
// The InstanceMaterialData contains the 'GlobalTransform' information for this custom
// instancing, and that is not taken into account with the built-in frustum culling.
// We must disable the built-in frustum culling by adding the `NoFrustumCulling` marker
// component to avoid incorrect culling.
NoFrustumCulling,
));
// camera
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0.0, 0.0, 15.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
}
#[derive(Component, Deref)]
struct InstanceMaterialData(Vec<InstanceData>);
impl ExtractComponent for InstanceMaterialData {
type QueryData = &'static InstanceMaterialData;
type QueryFilter = ();
type Out = Self;
fn extract_component(item: QueryItem<'_, Self::QueryData>) -> Option<Self> {
Some(InstanceMaterialData(item.0.clone()))
}
}
struct CustomMaterialPlugin;
impl Plugin for CustomMaterialPlugin {
fn build(&self, app: &mut App) {
app.add_plugins(ExtractComponentPlugin::<InstanceMaterialData>::default());
app.sub_app_mut(RenderApp)
.add_render_command::<Transparent3d, DrawCustom>()
.init_resource::<SpecializedMeshPipelines<CustomPipeline>>()
.add_systems(
Render,
(
queue_custom.in_set(RenderSet::QueueMeshes),
prepare_instance_buffers.in_set(RenderSet::PrepareResources),
),
);
}
fn finish(&self, app: &mut App) {
app.sub_app_mut(RenderApp).init_resource::<CustomPipeline>();
}
}
#[derive(Clone, Copy, Pod, Zeroable)]
#[repr(C)]
struct InstanceData {
position: Vec3,
scale: f32,
color: [f32; 4],
}
#[allow(clippy::too_many_arguments)]
fn queue_custom(
transparent_3d_draw_functions: Res<DrawFunctions<Transparent3d>>,
custom_pipeline: Res<CustomPipeline>,
msaa: Res<Msaa>,
mut pipelines: ResMut<SpecializedMeshPipelines<CustomPipeline>>,
pipeline_cache: Res<PipelineCache>,
meshes: Res<RenderAssets<Mesh>>,
render_mesh_instances: Res<RenderMeshInstances>,
material_meshes: Query<Entity, With<InstanceMaterialData>>,
mut views: Query<(&ExtractedView, &mut RenderPhase<Transparent3d>)>,
) {
let draw_custom = transparent_3d_draw_functions.read().id::<DrawCustom>();
let msaa_key = MeshPipelineKey::from_msaa_samples(msaa.samples());
for (view, mut transparent_phase) in &mut views {
let view_key = msaa_key | MeshPipelineKey::from_hdr(view.hdr);
let rangefinder = view.rangefinder3d();
for entity in &material_meshes {
let Some(mesh_instance) = render_mesh_instances.get(&entity) else {
continue;
};
let Some(mesh) = meshes.get(mesh_instance.mesh_asset_id) else {
continue;
};
let key = view_key | MeshPipelineKey::from_primitive_topology(mesh.primitive_topology);
let pipeline = pipelines
.specialize(&pipeline_cache, &custom_pipeline, key, &mesh.layout)
.unwrap();
transparent_phase.add(Transparent3d {
entity,
pipeline,
draw_function: draw_custom,
distance: rangefinder
.distance_translation(&mesh_instance.transforms.transform.translation),
batch_range: 0..1,
dynamic_offset: None,
});
}
}
}
#[derive(Component)]
struct InstanceBuffer {
buffer: Buffer,
length: usize,
}
fn prepare_instance_buffers(
mut commands: Commands,
query: Query<(Entity, &InstanceMaterialData)>,
render_device: Res<RenderDevice>,
) {
for (entity, instance_data) in &query {
let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor {
label: Some("instance data buffer"),
contents: bytemuck::cast_slice(instance_data.as_slice()),
usage: BufferUsages::VERTEX | BufferUsages::COPY_DST,
});
commands.entity(entity).insert(InstanceBuffer {
buffer,
length: instance_data.len(),
});
}
}
#[derive(Resource)]
struct CustomPipeline {
shader: Handle<Shader>,
mesh_pipeline: MeshPipeline,
}
impl FromWorld for CustomPipeline {
fn from_world(world: &mut World) -> Self {
let asset_server = world.resource::<AssetServer>();
let shader = asset_server.load("shaders/instancing.wgsl");
let mesh_pipeline = world.resource::<MeshPipeline>();
CustomPipeline {
shader,
mesh_pipeline: mesh_pipeline.clone(),
}
}
}
impl SpecializedMeshPipeline for CustomPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut descriptor = self.mesh_pipeline.specialize(key, layout)?;
descriptor.vertex.shader = self.shader.clone();
descriptor.vertex.buffers.push(VertexBufferLayout {
array_stride: std::mem::size_of::<InstanceData>() as u64,
step_mode: VertexStepMode::Instance,
attributes: vec![
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 0,
shader_location: 3, // shader locations 0-2 are taken up by Position, Normal and UV attributes
},
VertexAttribute {
format: VertexFormat::Float32x4,
offset: VertexFormat::Float32x4.size(),
shader_location: 4,
},
],
});
descriptor.fragment.as_mut().unwrap().shader = self.shader.clone();
Ok(descriptor)
}
}
type DrawCustom = (
SetItemPipeline,
SetMeshViewBindGroup<0>,
SetMeshBindGroup<1>,
DrawMeshInstanced,
);
struct DrawMeshInstanced;
impl<P: PhaseItem> RenderCommand<P> for DrawMeshInstanced {
type Param = (SRes<RenderAssets<Mesh>>, SRes<RenderMeshInstances>);
type ViewQuery = ();
type ItemQuery = Read<InstanceBuffer>;
#[inline]
fn render<'w>(
item: &P,
_view: (),
instance_buffer: &'w InstanceBuffer,
(meshes, render_mesh_instances): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let Some(mesh_instance) = render_mesh_instances.get(&item.entity()) else {
return RenderCommandResult::Failure;
};
let Some(gpu_mesh) = meshes.into_inner().get(mesh_instance.mesh_asset_id) else {
return RenderCommandResult::Failure;
};
pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));
pass.set_vertex_buffer(1, instance_buffer.buffer.slice(..));
match &gpu_mesh.buffer_info {
GpuBufferInfo::Indexed {
buffer,
index_format,
count,
} => {
pass.set_index_buffer(buffer.slice(..), 0, *index_format);
pass.draw_indexed(0..*count, 0, 0..instance_buffer.length as u32);
}
GpuBufferInfo::NonIndexed => {
pass.draw(0..gpu_mesh.vertex_count, 0..instance_buffer.length as u32);
}
}
RenderCommandResult::Success
}
}