bevy/crates/bevy_ecs/src/system/query.rs
Joona Aalto da68bfe94b
Fix Single doc links (#16493)
# Objective

In the [*Similar parameters* section of
`Query`](https://dev-docs.bevyengine.org/bevy/ecs/prelude/struct.Query.html#similar-parameters),
the doc link for `Single` actually links to `Query::single`, and
`Option<Single>` just links to `Option`. They should both link to
`Single`!

The first link is broken because there is a reference-style link defined
for `single`, but not for `Single`, and rustdoc treats the link as
case-insensitive for some reason.

## Solution

Fix the links!

## Testing

I built the docs locally with `cargo doc` and tested the links.
2024-11-24 18:44:00 +00:00

1717 lines
62 KiB
Rust

use crate::{
batching::BatchingStrategy,
component::Tick,
entity::Entity,
query::{
QueryCombinationIter, QueryData, QueryEntityError, QueryFilter, QueryIter, QueryManyIter,
QueryParIter, QuerySingleError, QueryState, ROQueryItem, ReadOnlyQueryData,
},
world::unsafe_world_cell::UnsafeWorldCell,
};
use core::{
borrow::Borrow,
marker::PhantomData,
ops::{Deref, DerefMut},
};
/// [System parameter] that provides selective access to the [`Component`] data stored in a [`World`].
///
/// Enables access to [entity identifiers] and [components] from a system, without the need to directly access the world.
/// Its iterators and getter methods return *query items*.
/// Each query item is a type containing data relative to an entity.
///
/// `Query` is a generic data structure that accepts two type parameters:
///
/// - **`D` (query data).**
/// The type of data contained in the query item.
/// Only entities that match the requested data will generate an item.
/// Must implement the [`QueryData`] trait.
/// - **`F` (query filter).**
/// A set of conditions that determines whether query items should be kept or discarded.
/// Must implement the [`QueryFilter`] trait.
/// This type parameter is optional.
///
/// [`World`]: crate::world::World
///
/// # Similar parameters
///
/// [`Query`] has few sibling [`SystemParam`](crate::system::system_param::SystemParam)s, which perform additional validation:
/// - [`Single`] - Exactly one matching query item.
/// - [`Option<Single>`] - Zero or one matching query item.
/// - [`Populated`] - At least one matching query item.
///
/// Those parameters will prevent systems from running if their requirements aren't met.
///
/// # System parameter declaration
///
/// A query should always be declared as a system parameter.
/// This section shows the most common idioms involving the declaration of `Query`.
///
/// ## Component access
///
/// A query defined with a reference to a component as the query fetch type parameter can be used to generate items that refer to the data of said component.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// # fn immutable_ref(
/// // A component can be accessed by shared reference...
/// query: Query<&ComponentA>
/// # ) {}
/// # bevy_ecs::system::assert_is_system(immutable_ref);
///
/// # fn mutable_ref(
/// // ... or by mutable reference.
/// query: Query<&mut ComponentA>
/// # ) {}
/// # bevy_ecs::system::assert_is_system(mutable_ref);
/// ```
///
/// ## Query filtering
///
/// Setting the query filter type parameter will ensure that each query item satisfies the given condition.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// # #[derive(Component)]
/// # struct ComponentB;
/// # fn system(
/// // Just `ComponentA` data will be accessed, but only for entities that also contain
/// // `ComponentB`.
/// query: Query<&ComponentA, With<ComponentB>>
/// # ) {}
/// # bevy_ecs::system::assert_is_system(system);
/// ```
///
/// ## `QueryData` or `QueryFilter` tuples
///
/// Using tuples, each `Query` type parameter can contain multiple elements.
///
/// In the following example, two components are accessed simultaneously, and the query items are filtered on two conditions.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// # #[derive(Component)]
/// # struct ComponentB;
/// # #[derive(Component)]
/// # struct ComponentC;
/// # #[derive(Component)]
/// # struct ComponentD;
/// # fn immutable_ref(
/// query: Query<(&ComponentA, &ComponentB), (With<ComponentC>, Without<ComponentD>)>
/// # ) {}
/// # bevy_ecs::system::assert_is_system(immutable_ref);
/// ```
///
/// ## Entity identifier access
///
/// The identifier of an entity can be made available inside the query item by including [`Entity`] in the query fetch type parameter.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// # fn system(
/// query: Query<(Entity, &ComponentA)>
/// # ) {}
/// # bevy_ecs::system::assert_is_system(system);
/// ```
///
/// ## Optional component access
///
/// A component can be made optional in a query by wrapping it into an [`Option`].
/// In this way, a query item can still be generated even if the queried entity does not contain the wrapped component.
/// In this case, its corresponding value will be `None`.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// # #[derive(Component)]
/// # struct ComponentB;
/// # fn system(
/// // Generates items for entities that contain `ComponentA`, and optionally `ComponentB`.
/// query: Query<(&ComponentA, Option<&ComponentB>)>
/// # ) {}
/// # bevy_ecs::system::assert_is_system(system);
/// ```
///
/// See the documentation for [`AnyOf`] to idiomatically declare many optional components.
///
/// See the [performance] section to learn more about the impact of optional components.
///
/// ## Disjoint queries
///
/// A system cannot contain two queries that break Rust's mutability rules.
/// In this case, the [`Without`] filter can be used to disjoint them.
///
/// In the following example, two queries mutably access the same component.
/// Executing this system will panic, since an entity could potentially match the two queries at the same time by having both `Player` and `Enemy` components.
/// This would violate mutability rules.
///
/// ```should_panic
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct Health;
/// # #[derive(Component)]
/// # struct Player;
/// # #[derive(Component)]
/// # struct Enemy;
/// #
/// fn randomize_health(
/// player_query: Query<&mut Health, With<Player>>,
/// enemy_query: Query<&mut Health, With<Enemy>>,
/// )
/// # {}
/// # let mut randomize_health_system = IntoSystem::into_system(randomize_health);
/// # let mut world = World::new();
/// # randomize_health_system.initialize(&mut world);
/// # randomize_health_system.run((), &mut world);
/// ```
///
/// Adding a `Without` filter will disjoint the queries.
/// In this way, any entity that has both `Player` and `Enemy` components is excluded from both queries.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct Health;
/// # #[derive(Component)]
/// # struct Player;
/// # #[derive(Component)]
/// # struct Enemy;
/// #
/// fn randomize_health(
/// player_query: Query<&mut Health, (With<Player>, Without<Enemy>)>,
/// enemy_query: Query<&mut Health, (With<Enemy>, Without<Player>)>,
/// )
/// # {}
/// # let mut randomize_health_system = IntoSystem::into_system(randomize_health);
/// # let mut world = World::new();
/// # randomize_health_system.initialize(&mut world);
/// # randomize_health_system.run((), &mut world);
/// ```
///
/// An alternative to this idiom is to wrap the conflicting queries into a [`ParamSet`](super::ParamSet).
///
/// ## Whole Entity Access
///
/// [`EntityRef`]s can be fetched from a query. This will give read-only access to any component on the entity,
/// and can be use to dynamically fetch any component without baking it into the query type. Due to this global
/// access to the entity, this will block any other system from parallelizing with it. As such these queries
/// should be sparingly used.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// # fn system(
/// query: Query<(EntityRef, &ComponentA)>
/// # ) {}
/// # bevy_ecs::system::assert_is_system(system);
/// ```
///
/// As `EntityRef` can read any component on an entity, a query using it will conflict with *any* mutable
/// access. It is strongly advised to couple `EntityRef` queries with the use of either `With`/`Without`
/// filters or `ParamSets`. This also limits the scope of the query, which will improve iteration performance
/// and also allows it to parallelize with other non-conflicting systems.
///
/// ```should_panic
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// # fn system(
/// // This will panic!
/// query: Query<(EntityRef, &mut ComponentA)>
/// # ) {}
/// # bevy_ecs::system::assert_system_does_not_conflict(system);
/// ```
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// # #[derive(Component)]
/// # struct ComponentB;
/// # fn system(
/// // This will not panic.
/// query_a: Query<EntityRef, With<ComponentA>>,
/// query_b: Query<&mut ComponentB, Without<ComponentA>>,
/// # ) {}
/// # bevy_ecs::system::assert_system_does_not_conflict(system);
/// ```
///
/// # Accessing query items
///
/// The following table summarizes the behavior of the safe methods that can be used to get query items.
///
/// |Query methods|Effect|
/// |:---:|---|
/// |[`iter`]\[[`_mut`][`iter_mut`]]|Returns an iterator over all query items.|
/// |[[`iter().for_each()`][`for_each`]\[[`iter_mut().for_each()`][`for_each`]],<br>[`par_iter`]\[[`_mut`][`par_iter_mut`]]|Runs a specified function for each query item.|
/// |[`iter_many`]\[[`_mut`][`iter_many_mut`]]|Iterates or runs a specified function over query items generated by a list of entities.|
/// |[`iter_combinations`]\[[`_mut`][`iter_combinations_mut`]]|Returns an iterator over all combinations of a specified number of query items.|
/// |[`get`]\[[`_mut`][`get_mut`]]|Returns the query item for the specified entity.|
/// |[`many`]\[[`_mut`][`many_mut`]],<br>[`get_many`]\[[`_mut`][`get_many_mut`]]|Returns the query items for the specified entities.|
/// |[`single`]\[[`_mut`][`single_mut`]],<br>[`get_single`]\[[`_mut`][`get_single_mut`]]|Returns the query item while verifying that there aren't others.|
///
/// There are two methods for each type of query operation: immutable and mutable (ending with `_mut`).
/// When using immutable methods, the query items returned are of type [`ROQueryItem`], a read-only version of the query item.
/// In this circumstance, every mutable reference in the query fetch type parameter is substituted by a shared reference.
///
/// # Performance
///
/// Creating a `Query` is a low-cost constant operation.
/// Iterating it, on the other hand, fetches data from the world and generates items, which can have a significant computational cost.
///
/// [`Table`] component storage type is much more optimized for query iteration than [`SparseSet`].
///
/// Two systems cannot be executed in parallel if both access the same component type where at least one of the accesses is mutable.
/// This happens unless the executor can verify that no entity could be found in both queries.
///
/// Optional components increase the number of entities a query has to match against.
/// This can hurt iteration performance, especially if the query solely consists of only optional components, since the query would iterate over each entity in the world.
///
/// The following table compares the computational complexity of the various methods and operations, where:
///
/// - **n** is the number of entities that match the query,
/// - **r** is the number of elements in a combination,
/// - **k** is the number of involved entities in the operation,
/// - **a** is the number of archetypes in the world,
/// - **C** is the [binomial coefficient], used to count combinations.
/// <sub>n</sub>C<sub>r</sub> is read as "*n* choose *r*" and is equivalent to the number of distinct unordered subsets of *r* elements that can be taken from a set of *n* elements.
///
/// |Query operation|Computational complexity|
/// |:---:|:---:|
/// |[`iter`]\[[`_mut`][`iter_mut`]]|O(n)|
/// |[[`iter().for_each()`][`for_each`]\[[`iter_mut().for_each()`][`for_each`]],<br>[`par_iter`]\[[`_mut`][`par_iter_mut`]]|O(n)|
/// |[`iter_many`]\[[`_mut`][`iter_many_mut`]]|O(k)|
/// |[`iter_combinations`]\[[`_mut`][`iter_combinations_mut`]]|O(<sub>n</sub>C<sub>r</sub>)|
/// |[`get`]\[[`_mut`][`get_mut`]]|O(1)|
/// |([`get_`][`get_many`])[`many`]|O(k)|
/// |([`get_`][`get_many_mut`])[`many_mut`]|O(k<sup>2</sup>)|
/// |[`single`]\[[`_mut`][`single_mut`]],<br>[`get_single`]\[[`_mut`][`get_single_mut`]]|O(a)|
/// |Archetype based filtering ([`With`], [`Without`], [`Or`])|O(a)|
/// |Change detection filtering ([`Added`], [`Changed`])|O(a + n)|
///
/// # `Iterator::for_each`
///
/// `for_each` methods are seen to be generally faster than directly iterating through `iter` on worlds with high archetype
/// fragmentation, and may enable additional optimizations like [autovectorization]. It is strongly advised to only use
/// [`Iterator::for_each`] if it tangibly improves performance. *Always* be sure profile or benchmark both before and
/// after the change!
///
/// ```rust
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// # fn system(
/// # query: Query<&ComponentA>,
/// # ) {
/// // This might be result in better performance...
/// query.iter().for_each(|component| {
/// // do things with the component
/// });
/// // ...than this. Always be sure to benchmark to validate the difference!
/// for component in query.iter() {
/// // do things with the component
/// }
/// # }
/// # bevy_ecs::system::assert_system_does_not_conflict(system);
/// ```
///
/// [`Component`]: crate::component::Component
/// [autovectorization]: https://en.wikipedia.org/wiki/Automatic_vectorization
/// [`Added`]: crate::query::Added
/// [`AnyOf`]: crate::query::AnyOf
/// [binomial coefficient]: https://en.wikipedia.org/wiki/Binomial_coefficient
/// [`Changed`]: crate::query::Changed
/// [components]: crate::component::Component
/// [entity identifiers]: Entity
/// [`EntityRef`]: crate::world::EntityRef
/// [`for_each`]: #iterator-for-each
/// [`get`]: Self::get
/// [`get_many`]: Self::get_many
/// [`get_many_mut`]: Self::get_many_mut
/// [`get_mut`]: Self::get_mut
/// [`get_single`]: Self::get_single
/// [`get_single_mut`]: Self::get_single_mut
/// [`iter`]: Self::iter
/// [`iter_combinations`]: Self::iter_combinations
/// [`iter_combinations_mut`]: Self::iter_combinations_mut
/// [`iter_many`]: Self::iter_many
/// [`iter_many_mut`]: Self::iter_many_mut
/// [`iter_mut`]: Self::iter_mut
/// [`many`]: Self::many
/// [`many_mut`]: Self::many_mut
/// [`Or`]: crate::query::Or
/// [`par_iter`]: Self::par_iter
/// [`par_iter_mut`]: Self::par_iter_mut
/// [performance]: #performance
/// [`Single`]: Single
/// [`Option<Single>`]: Single
/// [`single`]: Self::single
/// [`single_mut`]: Self::single_mut
/// [`SparseSet`]: crate::storage::SparseSet
/// [System parameter]: crate::system::SystemParam
/// [`Table`]: crate::storage::Table
/// [`With`]: crate::query::With
/// [`Without`]: crate::query::Without
pub struct Query<'world, 'state, D: QueryData, F: QueryFilter = ()> {
// SAFETY: Must have access to the components registered in `state`.
world: UnsafeWorldCell<'world>,
state: &'state QueryState<D, F>,
last_run: Tick,
this_run: Tick,
}
impl<D: QueryData, F: QueryFilter> core::fmt::Debug for Query<'_, '_, D, F> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("Query")
.field("matched_entities", &self.iter().count())
.field("state", &self.state)
.field("last_run", &self.last_run)
.field("this_run", &self.this_run)
.field("world", &self.world)
.finish()
}
}
impl<'w, 's, D: QueryData, F: QueryFilter> Query<'w, 's, D, F> {
/// Creates a new query.
///
/// # Panics
///
/// This will panic if the world used to create `state` is not `world`.
///
/// # Safety
///
/// This will create a query that could violate memory safety rules. Make sure that this is only
/// called in ways that ensure the queries have unique mutable access.
#[inline]
pub(crate) unsafe fn new(
world: UnsafeWorldCell<'w>,
state: &'s QueryState<D, F>,
last_run: Tick,
this_run: Tick,
) -> Self {
state.validate_world(world.id());
Self {
world,
state,
last_run,
this_run,
}
}
/// Returns another `Query` from this that fetches the read-only version of the query items.
///
/// For example, `Query<(&mut D1, &D2, &mut D3), With<F>>` will become `Query<(&D1, &D2, &D3), With<F>>`.
/// This can be useful when working around the borrow checker,
/// or reusing functionality between systems via functions that accept query types.
pub fn to_readonly(&self) -> Query<'_, 's, D::ReadOnly, F> {
let new_state = self.state.as_readonly();
// SAFETY: This is memory safe because it turns the query immutable.
unsafe { Query::new(self.world, new_state, self.last_run, self.this_run) }
}
/// Returns a new `Query` reborrowing the access from this one. The current query will be unusable
/// while the new one exists.
///
/// # Example
///
/// For example this allows to call other methods or other systems that require an owned `Query` without
/// completely giving up ownership of it.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct ComponentA;
///
/// fn helper_system(query: Query<&ComponentA>) { /* ... */}
///
/// fn system(mut query: Query<&ComponentA>) {
/// helper_system(query.reborrow());
/// // Can still use query here:
/// for component in &query {
/// // ...
/// }
/// }
/// ```
pub fn reborrow(&mut self) -> Query<'_, 's, D, F> {
// SAFETY: this query is exclusively borrowed while the new one exists, so
// no overlapping access can occur.
unsafe { Query::new(self.world, self.state, self.last_run, self.this_run) }
}
/// Returns an [`Iterator`] over the read-only query items.
///
/// This iterator is always guaranteed to return results from each matching entity once and only once.
/// Iteration order is not guaranteed.
///
/// # Example
///
/// Here, the `report_names_system` iterates over the `Player` component of every entity that contains it:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct Player { name: String }
/// #
/// fn report_names_system(query: Query<&Player>) {
/// for player in &query {
/// println!("Say hello to {}!", player.name);
/// }
/// }
/// # bevy_ecs::system::assert_is_system(report_names_system);
/// ```
///
/// # See also
///
/// [`iter_mut`](Self::iter_mut) for mutable query items.
#[inline]
pub fn iter(&self) -> QueryIter<'_, 's, D::ReadOnly, F> {
// SAFETY:
// - `self.world` has permission to access the required components.
// - The query is read-only, so it can be aliased even if it was originally mutable.
unsafe {
self.state
.as_readonly()
.iter_unchecked_manual(self.world, self.last_run, self.this_run)
}
}
/// Returns an [`Iterator`] over the query items.
///
/// This iterator is always guaranteed to return results from each matching entity once and only once.
/// Iteration order is not guaranteed.
///
/// # Example
///
/// Here, the `gravity_system` updates the `Velocity` component of every entity that contains it:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct Velocity { x: f32, y: f32, z: f32 }
/// fn gravity_system(mut query: Query<&mut Velocity>) {
/// const DELTA: f32 = 1.0 / 60.0;
/// for mut velocity in &mut query {
/// velocity.y -= 9.8 * DELTA;
/// }
/// }
/// # bevy_ecs::system::assert_is_system(gravity_system);
/// ```
///
/// # See also
///
/// [`iter`](Self::iter) for read-only query items.
#[inline]
pub fn iter_mut(&mut self) -> QueryIter<'_, 's, D, F> {
// SAFETY: `self.world` has permission to access the required components.
unsafe {
self.state
.iter_unchecked_manual(self.world, self.last_run, self.this_run)
}
}
/// Returns a [`QueryCombinationIter`] over all combinations of `K` read-only query items without repetition.
///
/// This iterator is always guaranteed to return results from each unique pair of matching entities.
/// Iteration order is not guaranteed.
///
/// # Example
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// #
/// fn some_system(query: Query<&ComponentA>) {
/// for [a1, a2] in query.iter_combinations() {
/// // ...
/// }
/// }
/// ```
///
/// # See also
///
/// - [`iter_combinations_mut`](Self::iter_combinations_mut) for mutable query item combinations.
#[inline]
pub fn iter_combinations<const K: usize>(
&self,
) -> QueryCombinationIter<'_, 's, D::ReadOnly, F, K> {
// SAFETY:
// - `self.world` has permission to access the required components.
// - The query is read-only, so it can be aliased even if it was originally mutable.
unsafe {
self.state.as_readonly().iter_combinations_unchecked_manual(
self.world,
self.last_run,
self.this_run,
)
}
}
/// Returns a [`QueryCombinationIter`] over all combinations of `K` query items without repetition.
///
/// This iterator is always guaranteed to return results from each unique pair of matching entities.
/// Iteration order is not guaranteed.
///
/// # Example
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// fn some_system(mut query: Query<&mut ComponentA>) {
/// let mut combinations = query.iter_combinations_mut();
/// while let Some([mut a1, mut a2]) = combinations.fetch_next() {
/// // mutably access components data
/// }
/// }
/// ```
///
/// # See also
///
/// - [`iter_combinations`](Self::iter_combinations) for read-only query item combinations.
#[inline]
pub fn iter_combinations_mut<const K: usize>(
&mut self,
) -> QueryCombinationIter<'_, 's, D, F, K> {
// SAFETY: `self.world` has permission to access the required components.
unsafe {
self.state
.iter_combinations_unchecked_manual(self.world, self.last_run, self.this_run)
}
}
/// Returns an [`Iterator`] over the read-only query items generated from an [`Entity`] list.
///
/// Items are returned in the order of the list of entities, and may not be unique if the input
/// doesn't guarantee uniqueness. Entities that don't match the query are skipped.
///
/// # Example
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct Counter {
/// # value: i32
/// # }
/// #
/// // A component containing an entity list.
/// #[derive(Component)]
/// struct Friends {
/// list: Vec<Entity>,
/// }
///
/// fn system(
/// friends_query: Query<&Friends>,
/// counter_query: Query<&Counter>,
/// ) {
/// for friends in &friends_query {
/// for counter in counter_query.iter_many(&friends.list) {
/// println!("Friend's counter: {:?}", counter.value);
/// }
/// }
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
///
/// # See also
///
/// - [`iter_many_mut`](Self::iter_many_mut) to get mutable query items.
#[inline]
pub fn iter_many<EntityList: IntoIterator<Item: Borrow<Entity>>>(
&self,
entities: EntityList,
) -> QueryManyIter<'_, 's, D::ReadOnly, F, EntityList::IntoIter> {
// SAFETY:
// - `self.world` has permission to access the required components.
// - The query is read-only, so it can be aliased even if it was originally mutable.
unsafe {
self.state.as_readonly().iter_many_unchecked_manual(
entities,
self.world,
self.last_run,
self.this_run,
)
}
}
/// Returns an iterator over the query items generated from an [`Entity`] list.
///
/// Items are returned in the order of the list of entities, and may not be unique if the input
/// doesn't guarantee uniqueness. Entities that don't match the query are skipped.
///
/// # Examples
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// struct Counter {
/// value: i32
/// }
///
/// #[derive(Component)]
/// struct Friends {
/// list: Vec<Entity>,
/// }
///
/// fn system(
/// friends_query: Query<&Friends>,
/// mut counter_query: Query<&mut Counter>,
/// ) {
/// for friends in &friends_query {
/// let mut iter = counter_query.iter_many_mut(&friends.list);
/// while let Some(mut counter) = iter.fetch_next() {
/// println!("Friend's counter: {:?}", counter.value);
/// counter.value += 1;
/// }
/// }
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
#[inline]
pub fn iter_many_mut<EntityList: IntoIterator<Item: Borrow<Entity>>>(
&mut self,
entities: EntityList,
) -> QueryManyIter<'_, 's, D, F, EntityList::IntoIter> {
// SAFETY: `self.world` has permission to access the required components.
unsafe {
self.state.iter_many_unchecked_manual(
entities,
self.world,
self.last_run,
self.this_run,
)
}
}
/// Returns an [`Iterator`] over the query items.
///
/// This iterator is always guaranteed to return results from each matching entity once and only once.
/// Iteration order is not guaranteed.
///
/// # Safety
///
/// This function makes it possible to violate Rust's aliasing guarantees.
/// You must make sure this call does not result in multiple mutable references to the same component.
///
/// # See also
///
/// - [`iter`](Self::iter) and [`iter_mut`](Self::iter_mut) for the safe versions.
#[inline]
pub unsafe fn iter_unsafe(&self) -> QueryIter<'_, 's, D, F> {
// SAFETY:
// - `self.world` has permission to access the required components.
// - The caller ensures that this operation will not result in any aliased mutable accesses.
unsafe {
self.state
.iter_unchecked_manual(self.world, self.last_run, self.this_run)
}
}
/// Iterates over all possible combinations of `K` query items without repetition.
///
/// This iterator is always guaranteed to return results from each unique pair of matching entities.
/// Iteration order is not guaranteed.
///
/// # Safety
///
/// This allows aliased mutability.
/// You must make sure this call does not result in multiple mutable references to the same component.
///
/// # See also
///
/// - [`iter_combinations`](Self::iter_combinations) and [`iter_combinations_mut`](Self::iter_combinations_mut) for the safe versions.
#[inline]
pub unsafe fn iter_combinations_unsafe<const K: usize>(
&self,
) -> QueryCombinationIter<'_, 's, D, F, K> {
// SAFETY:
// - `self.world` has permission to access the required components.
// - The caller ensures that this operation will not result in any aliased mutable accesses.
unsafe {
self.state
.iter_combinations_unchecked_manual(self.world, self.last_run, self.this_run)
}
}
/// Returns an [`Iterator`] over the query items generated from an [`Entity`] list.
///
/// Items are returned in the order of the list of entities, and may not be unique if the input
/// doesnn't guarantee uniqueness. Entities that don't match the query are skipped.
///
/// # Safety
///
/// This allows aliased mutability and does not check for entity uniqueness.
/// You must make sure this call does not result in multiple mutable references to the same component.
/// Particular care must be taken when collecting the data (rather than iterating over it one item at a time) such as via [`Iterator::collect`].
///
/// # See also
///
/// - [`iter_many_mut`](Self::iter_many_mut) to safely access the query items.
pub unsafe fn iter_many_unsafe<EntityList: IntoIterator<Item: Borrow<Entity>>>(
&self,
entities: EntityList,
) -> QueryManyIter<'_, 's, D, F, EntityList::IntoIter> {
// SAFETY:
// - `self.world` has permission to access the required components.
// - The caller ensures that this operation will not result in any aliased mutable accesses.
unsafe {
self.state.iter_many_unchecked_manual(
entities,
self.world,
self.last_run,
self.this_run,
)
}
}
/// Returns a parallel iterator over the query results for the given [`World`].
///
/// This parallel iterator is always guaranteed to return results from each matching entity once and
/// only once. Iteration order and thread assignment is not guaranteed.
///
/// If the `multithreaded` feature is disabled, iterating with this operates identically to [`Iterator::for_each`]
/// on [`QueryIter`].
///
/// This can only be called for read-only queries, see [`par_iter_mut`] for write-queries.
///
/// Note that you must use the `for_each` method to iterate over the
/// results, see [`par_iter_mut`] for an example.
///
/// [`par_iter_mut`]: Self::par_iter_mut
/// [`World`]: crate::world::World
#[inline]
pub fn par_iter(&self) -> QueryParIter<'_, '_, D::ReadOnly, F> {
QueryParIter {
world: self.world,
state: self.state.as_readonly(),
last_run: self.last_run,
this_run: self.this_run,
batching_strategy: BatchingStrategy::new(),
}
}
/// Returns a parallel iterator over the query results for the given [`World`].
///
/// This parallel iterator is always guaranteed to return results from each matching entity once and
/// only once. Iteration order and thread assignment is not guaranteed.
///
/// If the `multithreaded` feature is disabled, iterating with this operates identically to [`Iterator::for_each`]
/// on [`QueryIter`].
///
/// This can only be called for mutable queries, see [`par_iter`] for read-only-queries.
///
/// # Example
///
/// Here, the `gravity_system` updates the `Velocity` component of every entity that contains it:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct Velocity { x: f32, y: f32, z: f32 }
/// fn gravity_system(mut query: Query<&mut Velocity>) {
/// const DELTA: f32 = 1.0 / 60.0;
/// query.par_iter_mut().for_each(|mut velocity| {
/// velocity.y -= 9.8 * DELTA;
/// });
/// }
/// # bevy_ecs::system::assert_is_system(gravity_system);
/// ```
///
/// [`par_iter`]: Self::par_iter
/// [`World`]: crate::world::World
#[inline]
pub fn par_iter_mut(&mut self) -> QueryParIter<'_, '_, D, F> {
QueryParIter {
world: self.world,
state: self.state,
last_run: self.last_run,
this_run: self.this_run,
batching_strategy: BatchingStrategy::new(),
}
}
/// Returns the read-only query item for the given [`Entity`].
///
/// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is returned instead.
///
/// This is always guaranteed to run in `O(1)` time.
///
/// # Example
///
/// Here, `get` is used to retrieve the exact query item of the entity specified by the `SelectedCharacter` resource.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Resource)]
/// # struct SelectedCharacter { entity: Entity }
/// # #[derive(Component)]
/// # struct Character { name: String }
/// #
/// fn print_selected_character_name_system(
/// query: Query<&Character>,
/// selection: Res<SelectedCharacter>
/// )
/// {
/// if let Ok(selected_character) = query.get(selection.entity) {
/// println!("{}", selected_character.name);
/// }
/// }
/// # bevy_ecs::system::assert_is_system(print_selected_character_name_system);
/// ```
///
/// # See also
///
/// - [`get_mut`](Self::get_mut) to get a mutable query item.
#[inline]
pub fn get(&self, entity: Entity) -> Result<ROQueryItem<'_, D>, QueryEntityError> {
// SAFETY: system runs without conflicts with other systems.
// same-system queries have runtime borrow checks when they conflict
unsafe {
self.state.as_readonly().get_unchecked_manual(
self.world,
entity,
self.last_run,
self.this_run,
)
}
}
/// Returns the read-only query items for the given array of [`Entity`].
///
/// The returned query items are in the same order as the input.
/// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is returned instead.
/// The elements of the array do not need to be unique, unlike `get_many_mut`.
///
/// # See also
///
/// - [`get_many_mut`](Self::get_many_mut) to get mutable query items.
/// - [`many`](Self::many) for the panicking version.
#[inline]
pub fn get_many<const N: usize>(
&self,
entities: [Entity; N],
) -> Result<[ROQueryItem<'_, D>; N], QueryEntityError> {
// SAFETY:
// - `&self` ensures there is no mutable access to any components accessible to this query.
// - `self.world` matches `self.state`.
unsafe {
self.state
.get_many_read_only_manual(self.world, entities, self.last_run, self.this_run)
}
}
/// Returns the read-only query items for the given array of [`Entity`].
///
/// # Panics
///
/// This method panics if there is a query mismatch or a non-existing entity.
///
/// # Examples
/// ``` no_run
/// use bevy_ecs::prelude::*;
///
/// #[derive(Component)]
/// struct Targets([Entity; 3]);
///
/// #[derive(Component)]
/// struct Position{
/// x: i8,
/// y: i8
/// };
///
/// impl Position {
/// fn distance(&self, other: &Position) -> i8 {
/// // Manhattan distance is way easier to compute!
/// (self.x - other.x).abs() + (self.y - other.y).abs()
/// }
/// }
///
/// fn check_all_targets_in_range(targeting_query: Query<(Entity, &Targets, &Position)>, targets_query: Query<&Position>){
/// for (targeting_entity, targets, origin) in &targeting_query {
/// // We can use "destructuring" to unpack the results nicely
/// let [target_1, target_2, target_3] = targets_query.many(targets.0);
///
/// assert!(target_1.distance(origin) <= 5);
/// assert!(target_2.distance(origin) <= 5);
/// assert!(target_3.distance(origin) <= 5);
/// }
/// }
/// ```
///
/// # See also
///
/// - [`get_many`](Self::get_many) for the non-panicking version.
#[inline]
#[track_caller]
pub fn many<const N: usize>(&self, entities: [Entity; N]) -> [ROQueryItem<'_, D>; N] {
match self.get_many(entities) {
Ok(items) => items,
Err(error) => panic!("Cannot get query results: {error}"),
}
}
/// Returns the query item for the given [`Entity`].
///
/// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is returned instead.
///
/// This is always guaranteed to run in `O(1)` time.
///
/// # Example
///
/// Here, `get_mut` is used to retrieve the exact query item of the entity specified by the `PoisonedCharacter` resource.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Resource)]
/// # struct PoisonedCharacter { character_id: Entity }
/// # #[derive(Component)]
/// # struct Health(u32);
/// #
/// fn poison_system(mut query: Query<&mut Health>, poisoned: Res<PoisonedCharacter>) {
/// if let Ok(mut health) = query.get_mut(poisoned.character_id) {
/// health.0 -= 1;
/// }
/// }
/// # bevy_ecs::system::assert_is_system(poison_system);
/// ```
///
/// # See also
///
/// - [`get`](Self::get) to get a read-only query item.
#[inline]
pub fn get_mut(&mut self, entity: Entity) -> Result<D::Item<'_>, QueryEntityError> {
// SAFETY: system runs without conflicts with other systems.
// same-system queries have runtime borrow checks when they conflict
unsafe {
self.state
.get_unchecked_manual(self.world, entity, self.last_run, self.this_run)
}
}
/// Returns the query items for the given array of [`Entity`].
///
/// The returned query items are in the same order as the input.
/// In case of a nonexisting entity, duplicate entities or mismatched component, a [`QueryEntityError`] is returned instead.
///
/// # See also
///
/// - [`get_many`](Self::get_many) to get read-only query items.
/// - [`many_mut`](Self::many_mut) for the panicking version.
#[inline]
pub fn get_many_mut<const N: usize>(
&mut self,
entities: [Entity; N],
) -> Result<[D::Item<'_>; N], QueryEntityError> {
// SAFETY: scheduler ensures safe Query world access
unsafe {
self.state
.get_many_unchecked_manual(self.world, entities, self.last_run, self.this_run)
}
}
/// Returns the query items for the given array of [`Entity`].
///
/// # Panics
///
/// This method panics if there is a query mismatch, a non-existing entity, or the same `Entity` is included more than once in the array.
///
/// # Examples
///
/// ``` no_run
/// use bevy_ecs::prelude::*;
///
/// #[derive(Component)]
/// struct Spring{
/// connected_entities: [Entity; 2],
/// strength: f32,
/// }
///
/// #[derive(Component)]
/// struct Position {
/// x: f32,
/// y: f32,
/// }
///
/// #[derive(Component)]
/// struct Force {
/// x: f32,
/// y: f32,
/// }
///
/// fn spring_forces(spring_query: Query<&Spring>, mut mass_query: Query<(&Position, &mut Force)>){
/// for spring in &spring_query {
/// // We can use "destructuring" to unpack our query items nicely
/// let [(position_1, mut force_1), (position_2, mut force_2)] = mass_query.many_mut(spring.connected_entities);
///
/// force_1.x += spring.strength * (position_1.x - position_2.x);
/// force_1.y += spring.strength * (position_1.y - position_2.y);
///
/// // Silence borrow-checker: I have split your mutable borrow!
/// force_2.x += spring.strength * (position_2.x - position_1.x);
/// force_2.y += spring.strength * (position_2.y - position_1.y);
/// }
/// }
/// ```
///
/// # See also
///
/// - [`get_many_mut`](Self::get_many_mut) for the non panicking version.
/// - [`many`](Self::many) to get read-only query items.
#[inline]
#[track_caller]
pub fn many_mut<const N: usize>(&mut self, entities: [Entity; N]) -> [D::Item<'_>; N] {
match self.get_many_mut(entities) {
Ok(items) => items,
Err(error) => panic!("Cannot get query result: {error}"),
}
}
/// Returns the query item for the given [`Entity`].
///
/// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is returned instead.
///
/// This is always guaranteed to run in `O(1)` time.
///
/// # Safety
///
/// This function makes it possible to violate Rust's aliasing guarantees.
/// You must make sure this call does not result in multiple mutable references to the same component.
///
/// # See also
///
/// - [`get_mut`](Self::get_mut) for the safe version.
#[inline]
pub unsafe fn get_unchecked(&self, entity: Entity) -> Result<D::Item<'_>, QueryEntityError> {
// SEMI-SAFETY: system runs without conflicts with other systems.
// same-system queries have runtime borrow checks when they conflict
unsafe {
self.state
.get_unchecked_manual(self.world, entity, self.last_run, self.this_run)
}
}
/// Returns a single read-only query item when there is exactly one entity matching the query.
///
/// # Panics
///
/// This method panics if the number of query items is **not** exactly one.
///
/// # Example
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct Player;
/// # #[derive(Component)]
/// # struct Position(f32, f32);
/// fn player_system(query: Query<&Position, With<Player>>) {
/// let player_position = query.single();
/// // do something with player_position
/// }
/// # bevy_ecs::system::assert_is_system(player_system);
/// ```
///
/// # See also
///
/// - [`get_single`](Self::get_single) for the non-panicking version.
/// - [`single_mut`](Self::single_mut) to get the mutable query item.
#[track_caller]
pub fn single(&self) -> ROQueryItem<'_, D> {
self.get_single().unwrap()
}
/// Returns a single read-only query item when there is exactly one entity matching the query.
///
/// If the number of query items is not exactly one, a [`QuerySingleError`] is returned instead.
///
/// # Example
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::query::QuerySingleError;
/// # #[derive(Component)]
/// # struct PlayerScore(i32);
/// fn player_scoring_system(query: Query<&PlayerScore>) {
/// match query.get_single() {
/// Ok(PlayerScore(score)) => {
/// println!("Score: {}", score);
/// }
/// Err(QuerySingleError::NoEntities(_)) => {
/// println!("Error: There is no player!");
/// }
/// Err(QuerySingleError::MultipleEntities(_)) => {
/// println!("Error: There is more than one player!");
/// }
/// }
/// }
/// # bevy_ecs::system::assert_is_system(player_scoring_system);
/// ```
///
/// # See also
///
/// - [`get_single_mut`](Self::get_single_mut) to get the mutable query item.
/// - [`single`](Self::single) for the panicking version.
#[inline]
pub fn get_single(&self) -> Result<ROQueryItem<'_, D>, QuerySingleError> {
// SAFETY:
// the query ensures that the components it accesses are not mutably accessible somewhere else
// and the query is read only.
unsafe {
self.state.as_readonly().get_single_unchecked_manual(
self.world,
self.last_run,
self.this_run,
)
}
}
/// Returns a single query item when there is exactly one entity matching the query.
///
/// # Panics
///
/// This method panics if the number of query items is **not** exactly one.
///
/// # Example
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct Player;
/// # #[derive(Component)]
/// # struct Health(u32);
/// #
/// fn regenerate_player_health_system(mut query: Query<&mut Health, With<Player>>) {
/// let mut health = query.single_mut();
/// health.0 += 1;
/// }
/// # bevy_ecs::system::assert_is_system(regenerate_player_health_system);
/// ```
///
/// # See also
///
/// - [`get_single_mut`](Self::get_single_mut) for the non-panicking version.
/// - [`single`](Self::single) to get the read-only query item.
#[track_caller]
pub fn single_mut(&mut self) -> D::Item<'_> {
self.get_single_mut().unwrap()
}
/// Returns a single query item when there is exactly one entity matching the query.
///
/// If the number of query items is not exactly one, a [`QuerySingleError`] is returned instead.
///
/// # Example
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct Player;
/// # #[derive(Component)]
/// # struct Health(u32);
/// #
/// fn regenerate_player_health_system(mut query: Query<&mut Health, With<Player>>) {
/// let mut health = query.get_single_mut().expect("Error: Could not find a single player.");
/// health.0 += 1;
/// }
/// # bevy_ecs::system::assert_is_system(regenerate_player_health_system);
/// ```
///
/// # See also
///
/// - [`get_single`](Self::get_single) to get the read-only query item.
/// - [`single_mut`](Self::single_mut) for the panicking version.
#[inline]
pub fn get_single_mut(&mut self) -> Result<D::Item<'_>, QuerySingleError> {
// SAFETY:
// the query ensures mutable access to the components it accesses, and the query
// is uniquely borrowed
unsafe {
self.state
.get_single_unchecked_manual(self.world, self.last_run, self.this_run)
}
}
/// Returns `true` if there are no query items.
///
/// This is equivalent to `self.iter().next().is_none()`, and thus the worst case runtime will be `O(n)`
/// where `n` is the number of *potential* matches. This can be notably expensive for queries that rely
/// on non-archetypal filters such as [`Added`] or [`Changed`] which must individually check each query
/// result for a match.
///
/// # Example
///
/// Here, the score is increased only if an entity with a `Player` component is present in the world:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct Player;
/// # #[derive(Resource)]
/// # struct Score(u32);
/// fn update_score_system(query: Query<(), With<Player>>, mut score: ResMut<Score>) {
/// if !query.is_empty() {
/// score.0 += 1;
/// }
/// }
/// # bevy_ecs::system::assert_is_system(update_score_system);
/// ```
///
/// [`Added`]: crate::query::Added
/// [`Changed`]: crate::query::Changed
#[inline]
pub fn is_empty(&self) -> bool {
// SAFETY:
// - `self.world` has permission to read any data required by the WorldQuery.
// - `&self` ensures that no one currently has write access.
// - `self.world` matches `self.state`.
unsafe {
self.state
.is_empty_unsafe_world_cell(self.world, self.last_run, self.this_run)
}
}
/// Returns `true` if the given [`Entity`] matches the query.
///
/// This is always guaranteed to run in `O(1)` time.
///
/// # Example
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct InRange;
/// #
/// # #[derive(Resource)]
/// # struct Target {
/// # entity: Entity,
/// # }
/// #
/// fn targeting_system(in_range_query: Query<&InRange>, target: Res<Target>) {
/// if in_range_query.contains(target.entity) {
/// println!("Bam!")
/// }
/// }
/// # bevy_ecs::system::assert_is_system(targeting_system);
/// ```
#[inline]
pub fn contains(&self, entity: Entity) -> bool {
// SAFETY: NopFetch does not access any members while &self ensures no one has exclusive access
unsafe {
self.state
.as_nop()
.get_unchecked_manual(self.world, entity, self.last_run, self.this_run)
.is_ok()
}
}
/// Returns a [`QueryLens`] that can be used to get a query with a more general fetch.
///
/// For example, this can transform a `Query<(&A, &mut B)>` to a `Query<&B>`.
/// This can be useful for passing the query to another function. Note that since
/// filter terms are dropped, non-archetypal filters like [`Added`](crate::query::Added) and
/// [`Changed`](crate::query::Changed) will not be respected. To maintain or change filter
/// terms see [`Self::transmute_lens_filtered`]
///
/// ## Panics
///
/// This will panic if `NewD` is not a subset of the original fetch `Q`
///
/// ## Example
///
/// ```rust
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::QueryLens;
/// #
/// # #[derive(Component)]
/// # struct A(usize);
/// #
/// # #[derive(Component)]
/// # struct B(usize);
/// #
/// # let mut world = World::new();
/// #
/// # world.spawn((A(10), B(5)));
/// #
/// fn reusable_function(lens: &mut QueryLens<&A>) {
/// assert_eq!(lens.query().single().0, 10);
/// }
///
/// // We can use the function in a system that takes the exact query.
/// fn system_1(mut query: Query<&A>) {
/// reusable_function(&mut query.as_query_lens());
/// }
///
/// // We can also use it with a query that does not match exactly
/// // by transmuting it.
/// fn system_2(mut query: Query<(&mut A, &B)>) {
/// let mut lens = query.transmute_lens::<&A>();
/// reusable_function(&mut lens);
/// }
///
/// # let mut schedule = Schedule::default();
/// # schedule.add_systems((system_1, system_2));
/// # schedule.run(&mut world);
/// ```
///
/// ## Allowed Transmutes
///
/// Besides removing parameters from the query, you can also
/// make limited changes to the types of parameters.
///
/// * Can always add/remove [`Entity`]
/// * Can always add/remove [`EntityLocation`]
/// * Can always add/remove [`&Archetype`]
/// * `Ref<T>` <-> `&T`
/// * `&mut T` -> `&T`
/// * `&mut T` -> `Ref<T>`
/// * [`EntityMut`](crate::world::EntityMut) -> [`EntityRef`](crate::world::EntityRef)
///
/// [`EntityLocation`]: crate::entity::EntityLocation
/// [`&Archetype`]: crate::archetype::Archetype
#[track_caller]
pub fn transmute_lens<NewD: QueryData>(&mut self) -> QueryLens<'_, NewD> {
self.transmute_lens_filtered::<NewD, ()>()
}
/// Equivalent to [`Self::transmute_lens`] but also includes a [`QueryFilter`] type.
///
/// Note that the lens will iterate the same tables and archetypes as the original query. This means that
/// additional archetypal query terms like [`With`](crate::query::With) and [`Without`](crate::query::Without)
/// will not necessarily be respected and non-archetypal terms like [`Added`](crate::query::Added) and
/// [`Changed`](crate::query::Changed) will only be respected if they are in the type signature.
#[track_caller]
pub fn transmute_lens_filtered<NewD: QueryData, NewF: QueryFilter>(
&mut self,
) -> QueryLens<'_, NewD, NewF> {
let state = self.state.transmute_filtered::<NewD, NewF>(self.world);
QueryLens {
world: self.world,
state,
last_run: self.last_run,
this_run: self.this_run,
}
}
/// Gets a [`QueryLens`] with the same accesses as the existing query
pub fn as_query_lens(&mut self) -> QueryLens<'_, D> {
self.transmute_lens()
}
/// Returns a [`QueryLens`] that can be used to get a query with the combined fetch.
///
/// For example, this can take a `Query<&A>` and a `Query<&B>` and return a `Query<(&A, &B)>`.
/// The returned query will only return items with both `A` and `B`. Note that since filters
/// are dropped, non-archetypal filters like `Added` and `Changed` will not be respected.
/// To maintain or change filter terms see `Self::join_filtered`.
///
/// ## Example
///
/// ```rust
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::QueryLens;
/// #
/// # #[derive(Component)]
/// # struct Transform;
/// #
/// # #[derive(Component)]
/// # struct Player;
/// #
/// # #[derive(Component)]
/// # struct Enemy;
/// #
/// # let mut world = World::default();
/// # world.spawn((Transform, Player));
/// # world.spawn((Transform, Enemy));
///
/// fn system(
/// mut transforms: Query<&Transform>,
/// mut players: Query<&Player>,
/// mut enemies: Query<&Enemy>
/// ) {
/// let mut players_transforms: QueryLens<(&Transform, &Player)> = transforms.join(&mut players);
/// for (transform, player) in &players_transforms.query() {
/// // do something with a and b
/// }
///
/// let mut enemies_transforms: QueryLens<(&Transform, &Enemy)> = transforms.join(&mut enemies);
/// for (transform, enemy) in &enemies_transforms.query() {
/// // do something with a and b
/// }
/// }
///
/// # let mut schedule = Schedule::default();
/// # schedule.add_systems(system);
/// # schedule.run(&mut world);
/// ```
/// ## Panics
///
/// This will panic if `NewD` is not a subset of the union of the original fetch `Q` and `OtherD`.
///
/// ## Allowed Transmutes
///
/// Like `transmute_lens` the query terms can be changed with some restrictions.
/// See [`Self::transmute_lens`] for more details.
pub fn join<OtherD: QueryData, NewD: QueryData>(
&mut self,
other: &mut Query<OtherD>,
) -> QueryLens<'_, NewD> {
self.join_filtered(other)
}
/// Equivalent to [`Self::join`] but also includes a [`QueryFilter`] type.
///
/// Note that the lens with iterate a subset of the original queries' tables
/// and archetypes. This means that additional archetypal query terms like
/// `With` and `Without` will not necessarily be respected and non-archetypal
/// terms like `Added` and `Changed` will only be respected if they are in
/// the type signature.
pub fn join_filtered<
OtherD: QueryData,
OtherF: QueryFilter,
NewD: QueryData,
NewF: QueryFilter,
>(
&mut self,
other: &mut Query<OtherD, OtherF>,
) -> QueryLens<'_, NewD, NewF> {
let state = self
.state
.join_filtered::<OtherD, OtherF, NewD, NewF>(self.world, other.state);
QueryLens {
world: self.world,
state,
last_run: self.last_run,
this_run: self.this_run,
}
}
}
impl<'w, 's, D: QueryData, F: QueryFilter> IntoIterator for &'w Query<'_, 's, D, F> {
type Item = ROQueryItem<'w, D>;
type IntoIter = QueryIter<'w, 's, D::ReadOnly, F>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'w, 's, D: QueryData, F: QueryFilter> IntoIterator for &'w mut Query<'_, 's, D, F> {
type Item = D::Item<'w>;
type IntoIter = QueryIter<'w, 's, D, F>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<'w, 's, D: ReadOnlyQueryData, F: QueryFilter> Query<'w, 's, D, F> {
/// Returns the query item for the given [`Entity`], with the actual "inner" world lifetime.
///
/// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is
/// returned instead.
///
/// This can only return immutable data (mutable data will be cast to an immutable form).
/// See [`get_mut`](Self::get_mut) for queries that contain at least one mutable component.
///
/// # Example
///
/// Here, `get` is used to retrieve the exact query item of the entity specified by the
/// `SelectedCharacter` resource.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Resource)]
/// # struct SelectedCharacter { entity: Entity }
/// # #[derive(Component)]
/// # struct Character { name: String }
/// #
/// fn print_selected_character_name_system(
/// query: Query<&Character>,
/// selection: Res<SelectedCharacter>
/// )
/// {
/// if let Ok(selected_character) = query.get(selection.entity) {
/// println!("{}", selected_character.name);
/// }
/// }
/// # bevy_ecs::system::assert_is_system(print_selected_character_name_system);
/// ```
#[inline]
pub fn get_inner(&self, entity: Entity) -> Result<ROQueryItem<'w, D>, QueryEntityError> {
// SAFETY: system runs without conflicts with other systems.
// same-system queries have runtime borrow checks when they conflict
unsafe {
self.state.as_readonly().get_unchecked_manual(
self.world,
entity,
self.last_run,
self.this_run,
)
}
}
/// Returns an [`Iterator`] over the query items, with the actual "inner" world lifetime.
///
/// This can only return immutable data (mutable data will be cast to an immutable form).
/// See [`Self::iter_mut`] for queries that contain at least one mutable component.
///
/// # Example
///
/// Here, the `report_names_system` iterates over the `Player` component of every entity
/// that contains it:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// # #[derive(Component)]
/// # struct Player { name: String }
/// #
/// fn report_names_system(query: Query<&Player>) {
/// for player in &query {
/// println!("Say hello to {}!", player.name);
/// }
/// }
/// # bevy_ecs::system::assert_is_system(report_names_system);
/// ```
#[inline]
pub fn iter_inner(&self) -> QueryIter<'w, 's, D::ReadOnly, F> {
// SAFETY: system runs without conflicts with other systems.
// same-system queries have runtime borrow checks when they conflict
unsafe {
self.state
.as_readonly()
.iter_unchecked_manual(self.world, self.last_run, self.this_run)
}
}
}
/// Type returned from [`Query::transmute_lens`] containing the new [`QueryState`].
///
/// Call [`query`](QueryLens::query) or [`into`](Into::into) to construct the resulting [`Query`]
pub struct QueryLens<'w, Q: QueryData, F: QueryFilter = ()> {
world: UnsafeWorldCell<'w>,
state: QueryState<Q, F>,
last_run: Tick,
this_run: Tick,
}
impl<'w, Q: QueryData, F: QueryFilter> QueryLens<'w, Q, F> {
/// Create a [`Query`] from the underlying [`QueryState`].
pub fn query(&mut self) -> Query<'w, '_, Q, F> {
Query {
world: self.world,
state: &self.state,
last_run: self.last_run,
this_run: self.this_run,
}
}
}
impl<'w, 's, Q: QueryData, F: QueryFilter> From<&'s mut QueryLens<'w, Q, F>>
for Query<'w, 's, Q, F>
{
fn from(value: &'s mut QueryLens<'w, Q, F>) -> Query<'w, 's, Q, F> {
value.query()
}
}
impl<'w, 'q, Q: QueryData, F: QueryFilter> From<&'q mut Query<'w, '_, Q, F>>
for QueryLens<'q, Q, F>
{
fn from(value: &'q mut Query<'w, '_, Q, F>) -> QueryLens<'q, Q, F> {
value.transmute_lens_filtered()
}
}
/// [System parameter] that provides access to single entity's components, much like [`Query::single`]/[`Query::single_mut`].
///
/// This [`SystemParam`](crate::system::SystemParam) fails validation if zero or more than one matching entity exists.
/// This will cause systems that use this parameter to be skipped.
///
/// Use [`Option<Single<D, F>>`] instead if zero or one matching entities can exist.
///
/// See [`Query`] for more details.
///
/// [System parameter]: crate::system::SystemParam
pub struct Single<'w, D: QueryData, F: QueryFilter = ()> {
pub(crate) item: D::Item<'w>,
pub(crate) _filter: PhantomData<F>,
}
impl<'w, D: QueryData, F: QueryFilter> Deref for Single<'w, D, F> {
type Target = D::Item<'w>;
fn deref(&self) -> &Self::Target {
&self.item
}
}
impl<'w, D: QueryData, F: QueryFilter> DerefMut for Single<'w, D, F> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.item
}
}
impl<'w, D: QueryData, F: QueryFilter> Single<'w, D, F> {
/// Returns the inner item with ownership.
pub fn into_inner(self) -> D::Item<'w> {
self.item
}
}
/// [System parameter] that works very much like [`Query`] except it always contains at least one matching entity.
///
/// This [`SystemParam`](crate::system::SystemParam) fails validation if no matching entities exist.
/// This will cause systems that use this parameter to be skipped.
///
/// Much like [`Query::is_empty`] the worst case runtime will be `O(n)` where `n` is the number of *potential* matches.
/// This can be notably expensive for queries that rely on non-archetypal filters such as [`Added`](crate::query::Added) or [`Changed`](crate::query::Changed)
/// which must individually check each query result for a match.
///
/// See [`Query`] for more details.
///
/// [System parameter]: crate::system::SystemParam
pub struct Populated<'w, 's, D: QueryData, F: QueryFilter = ()>(pub(crate) Query<'w, 's, D, F>);
impl<'w, 's, D: QueryData, F: QueryFilter> Deref for Populated<'w, 's, D, F> {
type Target = Query<'w, 's, D, F>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<D: QueryData, F: QueryFilter> DerefMut for Populated<'_, '_, D, F> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl<'w, 's, D: QueryData, F: QueryFilter> Populated<'w, 's, D, F> {
/// Returns the inner item with ownership.
pub fn into_inner(self) -> Query<'w, 's, D, F> {
self.0
}
}