bevy/examples/ecs/ecs_guide.rs
Rob Parrett 1b444975ed Fix panics in ecs_guide example (#7525)
# Objective

Fixes #7565

`ecs_guide` example is currently panicking. This seems to just be a problem with the example only caused by the base sets PR.

## Solution

First, changed a few `in_set` to `in_base_set` to fix a few of

```
thread 'main' panicked at 'Systems cannot be added to 'base' system sets using 'in_set'. Use 'in_base_set' instead.', examples/ecs/ecs_guide.rs:301:45
```

And then added an `in_base_set` to fix the resulting (confusing) cycle error

```
2023-02-06T13:54:29.213843Z ERROR bevy_ecs::schedule_v3::schedule: schedule contains at least 1 cycle(s) -- cycle(s) found within:
 ---- 0: ["ecs_guide::game_over_system", "ecs_guide::score_check_system"]
```

I also changed this `add_system` call so the comment above and below make sense:
```diff
         // add_system(system) adds systems to the Update system set by default
         // However we can manually specify the set if we want to. The following is equivalent to
         // add_system(score_system)
-        .add_system(score_system)
+        .add_system(score_system.in_base_set(CoreSet::Update))
         // There are other `CoreSets`, such as `Last` which runs at the very end of each run.
```

## Notes

- Does `MySet` even need to be a base set? Seems like yes.
- Is that cycle error when there is no explicit `in_base_set` actually expected?
2023-02-08 23:01:53 +00:00

312 lines
12 KiB
Rust

//! This is a guided introduction to Bevy's "Entity Component System" (ECS)
//! All Bevy app logic is built using the ECS pattern, so definitely pay attention!
//!
//! Why ECS?
//! * Data oriented: Functionality is driven by data
//! * Clean Architecture: Loose coupling of functionality / prevents deeply nested inheritance
//! * High Performance: Massively parallel and cache friendly
//!
//! ECS Definitions:
//!
//! Component: just a normal Rust data type. generally scoped to a single piece of functionality
//! Examples: position, velocity, health, color, name
//!
//! Entity: a collection of components with a unique id
//! Examples: Entity1 { Name("Alice"), Position(0, 0) },
//! Entity2 { Name("Bill"), Position(10, 5) }
//!
//! Resource: a shared global piece of data
//! Examples: asset storage, events, system state
//!
//! System: runs logic on entities, components, and resources
//! Examples: move system, damage system
//!
//! Now that you know a little bit about ECS, lets look at some Bevy code!
//! We will now make a simple "game" to illustrate what Bevy's ECS looks like in practice.
use bevy::{
app::{AppExit, ScheduleRunnerPlugin, ScheduleRunnerSettings},
prelude::*,
utils::Duration,
};
use rand::random;
// COMPONENTS: Pieces of functionality we add to entities. These are just normal Rust data types
//
// Our game will have a number of "players". Each player has a name that identifies them
#[derive(Component)]
struct Player {
name: String,
}
// Each player also has a score. This component holds on to that score
#[derive(Component)]
struct Score {
value: usize,
}
// RESOURCES: "Global" state accessible by systems. These are also just normal Rust data types!
//
// This resource holds information about the game:
#[derive(Resource, Default)]
struct GameState {
current_round: usize,
total_players: usize,
winning_player: Option<String>,
}
// This resource provides rules for our "game".
#[derive(Resource)]
struct GameRules {
winning_score: usize,
max_rounds: usize,
max_players: usize,
}
// SYSTEMS: Logic that runs on entities, components, and resources. These generally run once each
// time the app updates.
//
// This is the simplest type of system. It just prints "This game is fun!" on each run:
fn print_message_system() {
println!("This game is fun!");
}
// Systems can also read and modify resources. This system starts a new "round" on each update:
// NOTE: "mut" denotes that the resource is "mutable"
// Res<GameRules> is read-only. ResMut<GameState> can modify the resource
fn new_round_system(game_rules: Res<GameRules>, mut game_state: ResMut<GameState>) {
game_state.current_round += 1;
println!(
"Begin round {} of {}",
game_state.current_round, game_rules.max_rounds
);
}
// This system updates the score for each entity with the "Player" and "Score" component.
fn score_system(mut query: Query<(&Player, &mut Score)>) {
for (player, mut score) in &mut query {
let scored_a_point = random::<bool>();
if scored_a_point {
score.value += 1;
println!(
"{} scored a point! Their score is: {}",
player.name, score.value
);
} else {
println!(
"{} did not score a point! Their score is: {}",
player.name, score.value
);
}
}
// this game isn't very fun is it :)
}
// This system runs on all entities with the "Player" and "Score" components, but it also
// accesses the "GameRules" resource to determine if a player has won.
fn score_check_system(
game_rules: Res<GameRules>,
mut game_state: ResMut<GameState>,
query: Query<(&Player, &Score)>,
) {
for (player, score) in &query {
if score.value == game_rules.winning_score {
game_state.winning_player = Some(player.name.clone());
}
}
}
// This system ends the game if we meet the right conditions. This fires an AppExit event, which
// tells our App to quit. Check out the "event.rs" example if you want to learn more about using
// events.
fn game_over_system(
game_rules: Res<GameRules>,
game_state: Res<GameState>,
mut app_exit_events: EventWriter<AppExit>,
) {
if let Some(ref player) = game_state.winning_player {
println!("{player} won the game!");
app_exit_events.send(AppExit);
} else if game_state.current_round == game_rules.max_rounds {
println!("Ran out of rounds. Nobody wins!");
app_exit_events.send(AppExit);
}
}
// This is a "startup" system that runs exactly once when the app starts up. Startup systems are
// generally used to create the initial "state" of our game. The only thing that distinguishes a
// "startup" system from a "normal" system is how it is registered: Startup:
// app.add_startup_system(startup_system) Normal: app.add_system(normal_system)
fn startup_system(mut commands: Commands, mut game_state: ResMut<GameState>) {
// Create our game rules resource
commands.insert_resource(GameRules {
max_rounds: 10,
winning_score: 4,
max_players: 4,
});
// Add some players to our world. Players start with a score of 0 ... we want our game to be
// fair!
commands.spawn_batch(vec![
(
Player {
name: "Alice".to_string(),
},
Score { value: 0 },
),
(
Player {
name: "Bob".to_string(),
},
Score { value: 0 },
),
]);
// set the total players to "2"
game_state.total_players = 2;
}
// This system uses a command buffer to (potentially) add a new player to our game on each
// iteration. Normal systems cannot safely access the World instance directly because they run in
// parallel. Our World contains all of our components, so mutating arbitrary parts of it in parallel
// is not thread safe. Command buffers give us the ability to queue up changes to our World without
// directly accessing it
fn new_player_system(
mut commands: Commands,
game_rules: Res<GameRules>,
mut game_state: ResMut<GameState>,
) {
// Randomly add a new player
let add_new_player = random::<bool>();
if add_new_player && game_state.total_players < game_rules.max_players {
game_state.total_players += 1;
commands.spawn((
Player {
name: format!("Player {}", game_state.total_players),
},
Score { value: 0 },
));
println!("Player {} joined the game!", game_state.total_players);
}
}
// If you really need full, immediate read/write access to the world or resources, you can use an
// "exclusive system".
// WARNING: These will block all parallel execution of other systems until they finish, so they
// should generally be avoided if you care about performance.
#[allow(dead_code)]
fn exclusive_player_system(world: &mut World) {
// this does the same thing as "new_player_system"
let total_players = world.resource_mut::<GameState>().total_players;
let should_add_player = {
let game_rules = world.resource::<GameRules>();
let add_new_player = random::<bool>();
add_new_player && total_players < game_rules.max_players
};
// Randomly add a new player
if should_add_player {
println!("Player {} has joined the game!", total_players + 1);
world.spawn((
Player {
name: format!("Player {}", total_players + 1),
},
Score { value: 0 },
));
let mut game_state = world.resource_mut::<GameState>();
game_state.total_players += 1;
}
}
// Sometimes systems need to be stateful. Bevy's ECS provides the `Local` system parameter
// for this case. A `Local<T>` refers to a value owned by the system of type `T`, which is automatically
// initialized using `T`'s `FromWorld`* implementation. In this system's `Local` (`counter`), `T` is `u32`.
// Therefore, on the first turn, `counter` has a value of 0.
//
// *: `FromWorld` is a trait which creates a value using the contents of the `World`.
// For any type which is `Default`, like `u32` in this example, `FromWorld` creates the default value.
fn print_at_end_round(mut counter: Local<u32>) {
*counter += 1;
println!("In set 'Last' for the {}th time", *counter);
// Print an empty line between rounds
println!();
}
/// A group of related system sets, used for controlling the order of systems
#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemSet)]
#[system_set(base)]
enum MySet {
BeforeRound,
AfterRound,
}
// Our Bevy app's entry point
fn main() {
// Bevy apps are created using the builder pattern. We use the builder to add systems,
// resources, and plugins to our app
App::new()
// Resources that implement the Default or FromWorld trait can be added like this:
.init_resource::<GameState>()
// Some systems are configured by adding their settings as a resource.
.insert_resource(ScheduleRunnerSettings::run_loop(Duration::from_secs(5)))
// Plugins are just a grouped set of app builder calls (just like we're doing here).
// We could easily turn our game into a plugin, but you can check out the plugin example for
// that :) The plugin below runs our app's "system schedule" once every 5 seconds
// (configured above).
.add_plugin(ScheduleRunnerPlugin::default())
// Startup systems run exactly once BEFORE all other systems. These are generally used for
// app initialization code (ex: adding entities and resources)
.add_startup_system(startup_system)
.add_system(print_message_system)
// SYSTEM EXECUTION ORDER
//
// Each system belongs to a `Schedule`, which controls the execution strategy and broad order
// of the systems within each tick. The [`CoreSchedule::Startup`] schedule holds
// startup systems, which are run a single time before the [`CoreSchedule::Main`] runs.
//
// By default, all systems run in parallel, except when they require mutable access to a
// piece of data. This is efficient, but sometimes order matters.
// For example, we want our "game over" system to execute after all other systems to ensure
// we don't accidentally run the game for an extra round.
//
// You can force an explicit ordering between systems using the `.before` or `.after` methods.
// Systems will not be scheduled until all of the systems that they have an "ordering dependency" on have
// completed.
//
// add_system(system) adds systems to the Update system set by default
// However we can manually specify the set if we want to. The following is equivalent to
// add_system(score_system)
.add_system(score_system.in_base_set(CoreSet::Update))
// There are other `CoreSets`, such as `Last` which runs at the very end of each run.
.add_system(print_at_end_round.in_base_set(CoreSet::Last))
// We can also create new system sets, and order them relative to other system sets.
// Here is what our games stage order will look like:
// "before_round": new_player_system, new_round_system
// "update": print_message_system, score_system
// "after_round": score_check_system, game_over_system
.configure_set(MySet::BeforeRound.before(CoreSet::Update))
.configure_set(MySet::AfterRound.after(CoreSet::Update))
.add_system(new_round_system.in_base_set(MySet::BeforeRound))
.add_system(
new_player_system
.after(new_round_system)
.in_base_set(MySet::BeforeRound),
)
.add_system(exclusive_player_system.in_base_set(MySet::BeforeRound))
.add_system(score_check_system.in_base_set(MySet::AfterRound))
.add_system(
// We can ensure that `game_over_system` runs after `score_check_system` using explicit ordering
// To do this we use either `.before` or `.after` to describe the order we want the relationship
// Since we are using `after`, `game_over_system` runs after `score_check_system`
game_over_system
.after(score_check_system)
.in_base_set(MySet::AfterRound),
)
// This call to run() starts the app we just built!
.run();
}