bevy/examples/state/custom_transitions.rs
Carter Anderson 21f1e3045c
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with
planned paths for fragmenting and non-fragmenting many-to-many
relationships). "Non-fragmenting" means that entities with the same
relationship type, but different relationship targets, are not forced
into separate tables (which would cause "table fragmentation").

Functionally, this fills a similar niche as the current Parent/Children
system. The biggest differences are:

1. Relationships have simpler internals and significantly improved
performance and UX. Commands and specialized APIs are no longer
necessary to keep everything in sync. Just spawn entities with the
relationship components you want and everything "just works".
2. Relationships are generalized. Bevy can provide additional built in
relationships, and users can define their own.

**REQUEST TO REVIEWERS**: _please don't leave top level comments and
instead comment on specific lines of code. That way we can take
advantage of threaded discussions. Also dont leave comments simply
pointing out CI failures as I can read those just fine._

## Built on top of what we have

Relationships are implemented on top of the Bevy ECS features we already
have: components, immutability, and hooks. This makes them immediately
compatible with all of our existing (and future) APIs for querying,
spawning, removing, scenes, reflection, etc. The fewer specialized APIs
we need to build, maintain, and teach, the better.

## Why focus on one-to-many non-fragmenting first?

1. This allows us to improve Parent/Children relationships immediately,
in a way that is reasonably uncontroversial. Switching our hierarchy to
fragmenting relationships would have significant performance
implications. ~~Flecs is heavily considering a switch to non-fragmenting
relations after careful considerations of the performance tradeoffs.~~
_(Correction from @SanderMertens: Flecs is implementing non-fragmenting
storage specialized for asset hierarchies, where asset hierarchies are
many instances of small trees that have a well defined structure)_
2. Adding generalized one-to-many relationships is currently a priority
for the [Next Generation Scene / UI
effort](https://github.com/bevyengine/bevy/discussions/14437).
Specifically, we're interested in building reactions and observers on
top.

## The changes

This PR does the following:

1. Adds a generic one-to-many Relationship system
3. Ports the existing Parent/Children system to Relationships, which now
lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been
removed.
4. Adds on_despawn component hooks
5. Relationships can opt-in to "despawn descendants" behavior, meaning
that the entire relationship hierarchy is despawned when
`entity.despawn()` is called. The built in Parent/Children hierarchies
enable this behavior, and `entity.despawn_recursive()` has been removed.
6. `world.spawn` now applies commands after spawning. This ensures that
relationship bookkeeping happens immediately and removes the need to
manually flush. This is in line with the equivalent behaviors recently
added to the other APIs (ex: insert).
7. Removes the ValidParentCheckPlugin (system-driven / poll based) in
favor of a `validate_parent_has_component` hook.

## Using Relationships

The `Relationship` trait looks like this:

```rust
pub trait Relationship: Component + Sized {
    type RelationshipSources: RelationshipSources<Relationship = Self>;
    fn get(&self) -> Entity;
    fn from(entity: Entity) -> Self;
}
```

A relationship is a component that:

1. Is a simple wrapper over a "target" Entity.
2. Has a corresponding `RelationshipSources` component, which is a
simple wrapper over a collection of entities. Every "target entity"
targeted by a "source entity" with a `Relationship` has a
`RelationshipSources` component, which contains every "source entity"
that targets it.

For example, the `Parent` component (as it currently exists in Bevy) is
the `Relationship` component and the entity containing the Parent is the
"source entity". The entity _inside_ the `Parent(Entity)` component is
the "target entity". And that target entity has a `Children` component
(which implements `RelationshipSources`).

In practice, the Parent/Children relationship looks like this:

```rust
#[derive(Relationship)]
#[relationship(relationship_sources = Children)]
pub struct Parent(pub Entity);

#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent)]
pub struct Children(Vec<Entity>);
```

The Relationship and RelationshipSources derives automatically implement
Component with the relevant configuration (namely, the hooks necessary
to keep everything in sync).

The most direct way to add relationships is to spawn entities with
relationship components:

```rust
let a = world.spawn_empty().id();
let b = world.spawn(Parent(a)).id();

assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]);
```

There are also convenience APIs for spawning more than one entity with
the same relationship:

```rust
world.spawn_empty().with_related::<Children>(|s| {
    s.spawn_empty();
    s.spawn_empty();
})
```

The existing `with_children` API is now a simpler wrapper over
`with_related`. This makes this change largely non-breaking for existing
spawn patterns.

```rust
world.spawn_empty().with_children(|s| {
    s.spawn_empty();
    s.spawn_empty();
})
```

There are also other relationship APIs, such as `add_related` and
`despawn_related`.

## Automatic recursive despawn via the new on_despawn hook

`RelationshipSources` can opt-in to "despawn descendants" behavior,
which will despawn all related entities in the relationship hierarchy:

```rust
#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent, despawn_descendants)]
pub struct Children(Vec<Entity>);
```

This means that `entity.despawn_recursive()` is no longer required.
Instead, just use `entity.despawn()` and the relevant related entities
will also be despawned.

To despawn an entity _without_ despawning its parent/child descendants,
you should remove the `Children` component first, which will also remove
the related `Parent` components:

```rust
entity
    .remove::<Children>()
    .despawn()
```

This builds on the on_despawn hook introduced in this PR, which is fired
when an entity is despawned (before other hooks).

## Relationships are the source of truth

`Relationship` is the _single_ source of truth component.
`RelationshipSources` is merely a reflection of what all the
`Relationship` components say. By embracing this, we are able to
significantly improve the performance of the system as a whole. We can
rely on component lifecycles to protect us against duplicates, rather
than needing to scan at runtime to ensure entities don't already exist
(which results in quadratic runtime). A single source of truth gives us
constant-time inserts. This does mean that we cannot directly spawn
populated `Children` components (or directly add or remove entities from
those components). I personally think this is a worthwhile tradeoff,
both because it makes the performance much better _and_ because it means
theres exactly one way to do things (which is a philosophy we try to
employ for Bevy APIs).

As an aside: treating both sides of the relationship as "equivalent
source of truth relations" does enable building simple and flexible
many-to-many relationships. But this introduces an _inherent_ need to
scan (or hash) to protect against duplicates.
[`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations)
has a very nice implementation of the "symmetrical many-to-many"
approach. Unfortunately I think the performance issues inherent to that
approach make it a poor choice for Bevy's default relationship system.

## Followup Work

* Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in
this PR to keep the diff reasonable, but I'm personally biased toward
this change (and using that naming pattern generally for relationships).
* [Improved spawning
ergonomics](https://github.com/bevyengine/bevy/discussions/16920)
* Consider adding relationship observers/triggers for "relationship
targets" whenever a source is added or removed. This would replace the
current "hierarchy events" system, which is unused upstream but may have
existing users downstream. I think triggers are the better fit for this
than a buffered event queue, and would prefer not to add that back.
* Fragmenting relations: My current idea hinges on the introduction of
"value components" (aka: components whose type _and_ value determines
their ComponentId, via something like Hashing / PartialEq). By labeling
a Relationship component such as `ChildOf(Entity)` as a "value
component", `ChildOf(e1)` and `ChildOf(e2)` would be considered
"different components". This makes the transition between fragmenting
and non-fragmenting a single flag, and everything else continues to work
as expected.
* Many-to-many support
* Non-fragmenting: We can expand Relationship to be a list of entities
instead of a single entity. I have largely already written the code for
this.
* Fragmenting: With the "value component" impl mentioned above, we get
many-to-many support "for free", as it would allow inserting multiple
copies of a Relationship component with different target entities.

Fixes #3742 (If this PR is merged, I think we should open more targeted
followup issues for the work above, with a fresh tracking issue free of
the large amount of less-directed historical context)
Fixes #17301
Fixes #12235 
Fixes #15299
Fixes #15308 

## Migration Guide

* Replace `ChildBuilder` with `ChildSpawnerCommands`.
* Replace calls to `.set_parent(parent_id)` with
`.insert(Parent(parent_id))`.
* Replace calls to `.replace_children()` with `.remove::<Children>()`
followed by `.add_children()`. Note that you'll need to manually despawn
any children that are not carried over.
* Replace calls to `.despawn_recursive()` with `.despawn()`.
* Replace calls to `.despawn_descendants()` with
`.despawn_related::<Children>()`.
* If you have any calls to `.despawn()` which depend on the children
being preserved, you'll need to remove the `Children` component first.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-01-18 22:20:30 +00:00

282 lines
10 KiB
Rust

//! This example illustrates how to register custom state transition behavior.
//!
//! In this case we are trying to add `OnReenter` and `OnReexit`
//! which will work much like `OnEnter` and `OnExit`,
//! but additionally trigger if the state changed into itself.
//!
//! While identity transitions exist internally in [`StateTransitionEvent`]s,
//! the default schedules intentionally ignore them, as this behavior is not commonly needed or expected.
//!
//! While this example displays identity transitions for a single state,
//! identity transitions are propagated through the entire state graph,
//! meaning any change to parent state will be propagated to [`ComputedStates`] and [`SubStates`].
use std::marker::PhantomData;
use bevy::{dev_tools::states::*, ecs::schedule::ScheduleLabel, prelude::*};
use custom_transitions::*;
#[derive(Debug, Clone, Copy, Default, Eq, PartialEq, Hash, States)]
enum AppState {
#[default]
Menu,
InGame,
}
fn main() {
App::new()
// We insert the custom transitions plugin for `AppState`.
.add_plugins((
DefaultPlugins,
IdentityTransitionsPlugin::<AppState>::default(),
))
.init_state::<AppState>()
.add_systems(Startup, setup)
.add_systems(OnEnter(AppState::Menu), setup_menu)
.add_systems(Update, menu.run_if(in_state(AppState::Menu)))
.add_systems(OnExit(AppState::Menu), cleanup_menu)
// We will restart the game progress every time we re-enter into it.
.add_systems(OnReenter(AppState::InGame), setup_game)
.add_systems(OnReexit(AppState::InGame), teardown_game)
// Doing it this way allows us to restart the game without any additional in-between states.
.add_systems(
Update,
((movement, change_color, trigger_game_restart).run_if(in_state(AppState::InGame)),),
)
.add_systems(Update, log_transitions::<AppState>)
.run();
}
/// This module provides the custom `OnReenter` and `OnReexit` transitions for easy installation.
mod custom_transitions {
use crate::*;
/// The plugin registers the transitions for one specific state.
/// If you use this for multiple states consider:
/// - installing the plugin multiple times,
/// - create an [`App`] extension method that inserts
/// those transitions during state installation.
#[derive(Default)]
pub struct IdentityTransitionsPlugin<S: States>(PhantomData<S>);
impl<S: States> Plugin for IdentityTransitionsPlugin<S> {
fn build(&self, app: &mut App) {
app.add_systems(
StateTransition,
// The internals can generate at most one transition event of specific type per frame.
// We take the latest one and clear the queue.
last_transition::<S>
// We insert the optional event into our schedule runner.
.pipe(run_reenter::<S>)
// State transitions are handled in three ordered steps, exposed as system sets.
// We can add our systems to them, which will run the corresponding schedules when they're evaluated.
// These are:
// - [`ExitSchedules`] - Ran from leaf-states to root-states,
// - [`TransitionSchedules`] - Ran in arbitrary order,
// - [`EnterSchedules`] - Ran from root-states to leaf-states.
.in_set(EnterSchedules::<S>::default()),
)
.add_systems(
StateTransition,
last_transition::<S>
.pipe(run_reexit::<S>)
.in_set(ExitSchedules::<S>::default()),
);
}
}
/// Custom schedule that will behave like [`OnEnter`], but run on identity transitions.
#[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
pub struct OnReenter<S: States>(pub S);
/// Schedule runner which checks conditions and if they're right
/// runs out custom schedule.
fn run_reenter<S: States>(transition: In<Option<StateTransitionEvent<S>>>, world: &mut World) {
// We return early if no transition event happened.
let Some(transition) = transition.0 else {
return;
};
// If we wanted to ignore identity transitions,
// we'd compare `exited` and `entered` here,
// and return if they were the same.
// We check if we actually entered a state.
// A [`None`] would indicate that the state was removed from the world.
// This only happens in the case of [`SubStates`] and [`ComputedStates`].
let Some(entered) = transition.entered else {
return;
};
// If all conditions are valid, we run our custom schedule.
let _ = world.try_run_schedule(OnReenter(entered));
// If you want to overwrite the default `OnEnter` behavior to act like re-enter,
// you can do so by running the `OnEnter` schedule here. Note that you don't want
// to run `OnEnter` when the default behavior does so.
// ```
// if transition.entered != transition.exited {
// return;
// }
// let _ = world.try_run_schedule(OnReenter(entered));
// ```
}
/// Custom schedule that will behave like [`OnExit`], but run on identity transitions.
#[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
pub struct OnReexit<S: States>(pub S);
fn run_reexit<S: States>(transition: In<Option<StateTransitionEvent<S>>>, world: &mut World) {
let Some(transition) = transition.0 else {
return;
};
let Some(exited) = transition.exited else {
return;
};
let _ = world.try_run_schedule(OnReexit(exited));
}
}
fn menu(
mut next_state: ResMut<NextState<AppState>>,
mut interaction_query: Query<
(&Interaction, &mut BackgroundColor),
(Changed<Interaction>, With<Button>),
>,
) {
for (interaction, mut color) in &mut interaction_query {
match *interaction {
Interaction::Pressed => {
*color = PRESSED_BUTTON.into();
next_state.set(AppState::InGame);
}
Interaction::Hovered => {
*color = HOVERED_BUTTON.into();
}
Interaction::None => {
*color = NORMAL_BUTTON.into();
}
}
}
}
fn cleanup_menu(mut commands: Commands, menu_data: Res<MenuData>) {
commands.entity(menu_data.button_entity).despawn();
}
const SPEED: f32 = 100.0;
fn movement(
time: Res<Time>,
input: Res<ButtonInput<KeyCode>>,
mut query: Query<&mut Transform, With<Sprite>>,
) {
for mut transform in &mut query {
let mut direction = Vec3::ZERO;
if input.pressed(KeyCode::ArrowLeft) {
direction.x -= 1.0;
}
if input.pressed(KeyCode::ArrowRight) {
direction.x += 1.0;
}
if input.pressed(KeyCode::ArrowUp) {
direction.y += 1.0;
}
if input.pressed(KeyCode::ArrowDown) {
direction.y -= 1.0;
}
if direction != Vec3::ZERO {
transform.translation += direction.normalize() * SPEED * time.delta_secs();
}
}
}
fn change_color(time: Res<Time>, mut query: Query<&mut Sprite>) {
for mut sprite in &mut query {
let new_color = LinearRgba {
blue: ops::sin(time.elapsed_secs() * 0.5) + 2.0,
..LinearRgba::from(sprite.color)
};
sprite.color = new_color.into();
}
}
// We can restart the game by pressing "R".
// This will trigger an [`AppState::InGame`] -> [`AppState::InGame`]
// transition, which will run our custom schedules.
fn trigger_game_restart(
input: Res<ButtonInput<KeyCode>>,
mut next_state: ResMut<NextState<AppState>>,
) {
if input.just_pressed(KeyCode::KeyR) {
// Although we are already in this state setting it again will generate an identity transition.
// While default schedules ignore those kinds of transitions, our custom schedules will react to them.
next_state.set(AppState::InGame);
}
}
fn setup(mut commands: Commands) {
commands.spawn(Camera2d);
}
fn setup_game(mut commands: Commands, asset_server: Res<AssetServer>) {
commands.spawn(Sprite::from_image(asset_server.load("branding/icon.png")));
info!("Setup game");
}
fn teardown_game(mut commands: Commands, player: Single<Entity, With<Sprite>>) {
commands.entity(*player).despawn();
info!("Teardown game");
}
#[derive(Resource)]
struct MenuData {
pub button_entity: Entity,
}
const NORMAL_BUTTON: Color = Color::srgb(0.15, 0.15, 0.15);
const HOVERED_BUTTON: Color = Color::srgb(0.25, 0.25, 0.25);
const PRESSED_BUTTON: Color = Color::srgb(0.35, 0.75, 0.35);
fn setup_menu(mut commands: Commands) {
let button_entity = commands
.spawn(Node {
// center button
width: Val::Percent(100.),
height: Val::Percent(100.),
justify_content: JustifyContent::Center,
align_items: AlignItems::Center,
..default()
})
.with_children(|parent| {
parent
.spawn((
Button,
Node {
width: Val::Px(150.),
height: Val::Px(65.),
// horizontally center child text
justify_content: JustifyContent::Center,
// vertically center child text
align_items: AlignItems::Center,
..default()
},
BackgroundColor(NORMAL_BUTTON),
))
.with_children(|parent| {
parent.spawn((
Text::new("Play"),
TextFont {
font_size: 33.0,
..default()
},
TextColor(Color::srgb(0.9, 0.9, 0.9)),
));
});
})
.id();
commands.insert_resource(MenuData { button_entity });
}