bevy/examples/3d/clearcoat.rs
Carter Anderson 015f2c69ca
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective

Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)

## Solution

As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.

This accomplishes a number of goals:

## Ergonomics wins

Specifying both `Node` and `Style` is now no longer required for
non-default styles

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

## Conceptual clarity

`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).

By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.

## Next Steps

* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.

---

## Migration Guide

Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:

Before:
```rust
fn system(nodes: Query<&Node>) {
    for node in &nodes {
        let computed_size = node.size();
    }
}
```

After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
    for computed_node in &computed_nodes {
        let computed_size = computed_node.size();
    }
}
```
2024-10-18 22:25:33 +00:00

322 lines
10 KiB
Rust

//! Demonstrates the clearcoat PBR feature.
//!
//! Clearcoat is a separate material layer that represents a thin translucent
//! layer over a material. Examples include (from the Filament spec [1]) car paint,
//! soda cans, and lacquered wood.
//!
//! In glTF, clearcoat is supported via the `KHR_materials_clearcoat` [2]
//! extension. This extension is well supported by tools; in particular,
//! Blender's glTF exporter maps the clearcoat feature of its Principled BSDF
//! node to this extension, allowing it to appear in Bevy.
//!
//! This Bevy example is inspired by the corresponding three.js example [3].
//!
//! [1]: https://google.github.io/filament/Filament.html#materialsystem/clearcoatmodel
//!
//! [2]: https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_clearcoat/README.md
//!
//! [3]: https://threejs.org/examples/webgl_materials_physical_clearcoat.html
use std::f32::consts::PI;
use bevy::{
color::palettes::css::{BLUE, GOLD, WHITE},
core_pipeline::{tonemapping::Tonemapping::AcesFitted, Skybox},
math::vec3,
prelude::*,
render::texture::ImageLoaderSettings,
};
/// The size of each sphere.
const SPHERE_SCALE: f32 = 0.9;
/// The speed at which the spheres rotate, in radians per second.
const SPHERE_ROTATION_SPEED: f32 = 0.8;
/// Which type of light we're using: a point light or a directional light.
#[derive(Clone, Copy, PartialEq, Resource, Default)]
enum LightMode {
#[default]
Point,
Directional,
}
/// Tags the example spheres.
#[derive(Component)]
struct ExampleSphere;
/// Entry point.
pub fn main() {
App::new()
.init_resource::<LightMode>()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, animate_light)
.add_systems(Update, animate_spheres)
.add_systems(Update, (handle_input, update_help_text).chain())
.run();
}
/// Initializes the scene.
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
asset_server: Res<AssetServer>,
light_mode: Res<LightMode>,
) {
let sphere = create_sphere_mesh(&mut meshes);
spawn_car_paint_sphere(&mut commands, &mut materials, &asset_server, &sphere);
spawn_coated_glass_bubble_sphere(&mut commands, &mut materials, &sphere);
spawn_golf_ball(&mut commands, &asset_server);
spawn_scratched_gold_ball(&mut commands, &mut materials, &asset_server, &sphere);
spawn_light(&mut commands);
spawn_camera(&mut commands, &asset_server);
spawn_text(&mut commands, &light_mode);
}
/// Generates a sphere.
fn create_sphere_mesh(meshes: &mut Assets<Mesh>) -> Handle<Mesh> {
// We're going to use normal maps, so make sure we've generated tangents, or
// else the normal maps won't show up.
let mut sphere_mesh = Sphere::new(1.0).mesh().build();
sphere_mesh
.generate_tangents()
.expect("Failed to generate tangents");
meshes.add(sphere_mesh)
}
/// Spawn a regular object with a clearcoat layer. This looks like car paint.
fn spawn_car_paint_sphere(
commands: &mut Commands,
materials: &mut Assets<StandardMaterial>,
asset_server: &AssetServer,
sphere: &Handle<Mesh>,
) {
commands
.spawn((
Mesh3d(sphere.clone()),
MeshMaterial3d(materials.add(StandardMaterial {
clearcoat: 1.0,
clearcoat_perceptual_roughness: 0.1,
normal_map_texture: Some(asset_server.load_with_settings(
"textures/BlueNoise-Normal.png",
|settings: &mut ImageLoaderSettings| settings.is_srgb = false,
)),
metallic: 0.9,
perceptual_roughness: 0.5,
base_color: BLUE.into(),
..default()
})),
Transform::from_xyz(-1.0, 1.0, 0.0).with_scale(Vec3::splat(SPHERE_SCALE)),
))
.insert(ExampleSphere);
}
/// Spawn a semitransparent object with a clearcoat layer.
fn spawn_coated_glass_bubble_sphere(
commands: &mut Commands,
materials: &mut Assets<StandardMaterial>,
sphere: &Handle<Mesh>,
) {
commands
.spawn((
Mesh3d(sphere.clone()),
MeshMaterial3d(materials.add(StandardMaterial {
clearcoat: 1.0,
clearcoat_perceptual_roughness: 0.1,
metallic: 0.5,
perceptual_roughness: 0.1,
base_color: Color::srgba(0.9, 0.9, 0.9, 0.3),
alpha_mode: AlphaMode::Blend,
..default()
})),
Transform::from_xyz(-1.0, -1.0, 0.0).with_scale(Vec3::splat(SPHERE_SCALE)),
))
.insert(ExampleSphere);
}
/// Spawns an object with both a clearcoat normal map (a scratched varnish) and
/// a main layer normal map (the golf ball pattern).
///
/// This object is in glTF format, using the `KHR_materials_clearcoat`
/// extension.
fn spawn_golf_ball(commands: &mut Commands, asset_server: &AssetServer) {
commands.spawn((
SceneRoot(
asset_server.load(GltfAssetLabel::Scene(0).from_asset("models/GolfBall/GolfBall.glb")),
),
Transform::from_xyz(1.0, 1.0, 0.0).with_scale(Vec3::splat(SPHERE_SCALE)),
ExampleSphere,
));
}
/// Spawns an object with only a clearcoat normal map (a scratch pattern) and no
/// main layer normal map.
fn spawn_scratched_gold_ball(
commands: &mut Commands,
materials: &mut Assets<StandardMaterial>,
asset_server: &AssetServer,
sphere: &Handle<Mesh>,
) {
commands
.spawn((
Mesh3d(sphere.clone()),
MeshMaterial3d(materials.add(StandardMaterial {
clearcoat: 1.0,
clearcoat_perceptual_roughness: 0.3,
clearcoat_normal_texture: Some(asset_server.load_with_settings(
"textures/ScratchedGold-Normal.png",
|settings: &mut ImageLoaderSettings| settings.is_srgb = false,
)),
metallic: 0.9,
perceptual_roughness: 0.1,
base_color: GOLD.into(),
..default()
})),
Transform::from_xyz(1.0, -1.0, 0.0).with_scale(Vec3::splat(SPHERE_SCALE)),
))
.insert(ExampleSphere);
}
/// Spawns a light.
fn spawn_light(commands: &mut Commands) {
commands.spawn(create_point_light());
}
/// Spawns a camera with associated skybox and environment map.
fn spawn_camera(commands: &mut Commands, asset_server: &AssetServer) {
commands
.spawn((
Camera3d::default(),
Camera {
hdr: true,
..default()
},
Projection::Perspective(PerspectiveProjection {
fov: 27.0 / 180.0 * PI,
..default()
}),
Transform::from_xyz(0.0, 0.0, 10.0),
AcesFitted,
))
.insert(Skybox {
brightness: 5000.0,
image: asset_server.load("environment_maps/pisa_specular_rgb9e5_zstd.ktx2"),
..default()
})
.insert(EnvironmentMapLight {
diffuse_map: asset_server.load("environment_maps/pisa_diffuse_rgb9e5_zstd.ktx2"),
specular_map: asset_server.load("environment_maps/pisa_specular_rgb9e5_zstd.ktx2"),
intensity: 2000.0,
..default()
});
}
/// Spawns the help text.
fn spawn_text(commands: &mut Commands, light_mode: &LightMode) {
commands.spawn((
light_mode.create_help_text(),
Node {
position_type: PositionType::Absolute,
bottom: Val::Px(12.0),
left: Val::Px(12.0),
..default()
},
));
}
/// Moves the light around.
fn animate_light(
mut lights: Query<&mut Transform, Or<(With<PointLight>, With<DirectionalLight>)>>,
time: Res<Time>,
) {
let now = time.elapsed_secs();
for mut transform in lights.iter_mut() {
transform.translation = vec3(
ops::sin(now * 1.4),
ops::cos(now * 1.0),
ops::cos(now * 0.6),
) * vec3(3.0, 4.0, 3.0);
transform.look_at(Vec3::ZERO, Vec3::Y);
}
}
/// Rotates the spheres.
fn animate_spheres(mut spheres: Query<&mut Transform, With<ExampleSphere>>, time: Res<Time>) {
let now = time.elapsed_secs();
for mut transform in spheres.iter_mut() {
transform.rotation = Quat::from_rotation_y(SPHERE_ROTATION_SPEED * now);
}
}
/// Handles the user pressing Space to change the type of light from point to
/// directional and vice versa.
fn handle_input(
mut commands: Commands,
mut light_query: Query<Entity, Or<(With<PointLight>, With<DirectionalLight>)>>,
keyboard: Res<ButtonInput<KeyCode>>,
mut light_mode: ResMut<LightMode>,
) {
if !keyboard.just_pressed(KeyCode::Space) {
return;
}
for light in light_query.iter_mut() {
match *light_mode {
LightMode::Point => {
*light_mode = LightMode::Directional;
commands
.entity(light)
.remove::<PointLight>()
.insert(create_directional_light());
}
LightMode::Directional => {
*light_mode = LightMode::Point;
commands
.entity(light)
.remove::<DirectionalLight>()
.insert(create_point_light());
}
}
}
}
/// Updates the help text at the bottom of the screen.
fn update_help_text(mut text_query: Query<&mut Text>, light_mode: Res<LightMode>) {
for mut text in text_query.iter_mut() {
*text = light_mode.create_help_text();
}
}
/// Creates or recreates the moving point light.
fn create_point_light() -> PointLight {
PointLight {
color: WHITE.into(),
intensity: 100000.0,
..default()
}
}
/// Creates or recreates the moving directional light.
fn create_directional_light() -> DirectionalLight {
DirectionalLight {
color: WHITE.into(),
illuminance: 1000.0,
..default()
}
}
impl LightMode {
/// Creates the help text at the bottom of the screen.
fn create_help_text(&self) -> Text {
let help_text = match *self {
LightMode::Point => "Press Space to switch to a directional light",
LightMode::Directional => "Press Space to switch to a point light",
};
Text::new(help_text)
}
}