//! Additional [`Gizmos`] Functions -- Grids //! //! Includes the implementation of[`Gizmos::grid`] and [`Gizmos::grid_2d`]. //! and assorted support items. use crate::prelude::{GizmoConfigGroup, Gizmos}; use bevy_color::LinearRgba; use bevy_math::{Quat, UVec2, UVec3, Vec2, Vec3}; /// A builder returned by [`Gizmos::grid_3d`] pub struct GridBuilder3d<'a, 'w, 's, T: GizmoConfigGroup> { gizmos: &'a mut Gizmos<'w, 's, T>, position: Vec3, rotation: Quat, spacing: Vec3, cell_count: UVec3, skew: Vec3, outer_edges: [bool; 3], color: LinearRgba, } /// A builder returned by [`Gizmos::grid`] and [`Gizmos::grid_2d`] pub struct GridBuilder2d<'a, 'w, 's, T: GizmoConfigGroup> { gizmos: &'a mut Gizmos<'w, 's, T>, position: Vec3, rotation: Quat, spacing: Vec2, cell_count: UVec2, skew: Vec2, outer_edges: [bool; 2], color: LinearRgba, } impl GridBuilder3d<'_, '_, '_, T> { /// Skews the grid by `tan(skew)` in the x direction. /// `skew` is in radians pub fn skew_x(mut self, skew: f32) -> Self { self.skew.x = skew; self } /// Skews the grid by `tan(skew)` in the y direction. /// `skew` is in radians pub fn skew_y(mut self, skew: f32) -> Self { self.skew.y = skew; self } /// Skews the grid by `tan(skew)` in the z direction. /// `skew` is in radians pub fn skew_z(mut self, skew: f32) -> Self { self.skew.z = skew; self } /// Skews the grid by `tan(skew)` in the x, y and z directions. /// `skew` is in radians pub fn skew(mut self, skew: Vec3) -> Self { self.skew = skew; self } /// Declare that the outer edges of the grid along the x axis should be drawn. /// By default, the outer edges will not be drawn. pub fn outer_edges_x(mut self) -> Self { self.outer_edges[0] = true; self } /// Declare that the outer edges of the grid along the y axis should be drawn. /// By default, the outer edges will not be drawn. pub fn outer_edges_y(mut self) -> Self { self.outer_edges[1] = true; self } /// Declare that the outer edges of the grid along the z axis should be drawn. /// By default, the outer edges will not be drawn. pub fn outer_edges_z(mut self) -> Self { self.outer_edges[2] = true; self } /// Declare that all outer edges of the grid should be drawn. /// By default, the outer edges will not be drawn. pub fn outer_edges(mut self) -> Self { self.outer_edges.fill(true); self } } impl GridBuilder2d<'_, '_, '_, T> { /// Skews the grid by `tan(skew)` in the x direction. /// `skew` is in radians pub fn skew_x(mut self, skew: f32) -> Self { self.skew.x = skew; self } /// Skews the grid by `tan(skew)` in the y direction. /// `skew` is in radians pub fn skew_y(mut self, skew: f32) -> Self { self.skew.y = skew; self } /// Skews the grid by `tan(skew)` in the x and y directions. /// `skew` is in radians pub fn skew(mut self, skew: Vec2) -> Self { self.skew = skew; self } /// Declare that the outer edges of the grid along the x axis should be drawn. /// By default, the outer edges will not be drawn. pub fn outer_edges_x(mut self) -> Self { self.outer_edges[0] = true; self } /// Declare that the outer edges of the grid along the y axis should be drawn. /// By default, the outer edges will not be drawn. pub fn outer_edges_y(mut self) -> Self { self.outer_edges[1] = true; self } /// Declare that all outer edges of the grid should be drawn. /// By default, the outer edges will not be drawn. pub fn outer_edges(mut self) -> Self { self.outer_edges.fill(true); self } } impl Drop for GridBuilder3d<'_, '_, '_, T> { fn drop(&mut self) { draw_grid( self.gizmos, self.position, self.rotation, self.spacing, self.cell_count, self.skew, self.outer_edges, self.color, ); } } impl Drop for GridBuilder2d<'_, '_, '_, T> { fn drop(&mut self) { draw_grid( self.gizmos, self.position, self.rotation, self.spacing.extend(0.), self.cell_count.extend(0), self.skew.extend(0.), [self.outer_edges[0], self.outer_edges[1], true], self.color, ); } } impl<'w, 's, T: GizmoConfigGroup> Gizmos<'w, 's, T> { /// Draw a 2D grid in 3D. /// /// This should be called for each frame the grid needs to be rendered. /// /// # Arguments /// /// - `position`: The center point of the grid. /// - `rotation`: defines the orientation of the grid, by default we assume the grid is contained in a plane parallel to the XY plane. /// - `cell_count`: defines the amount of cells in the x and y axes /// - `spacing`: defines the distance between cells along the x and y axes /// - `color`: color of the grid /// /// # Builder methods /// /// - The skew of the grid can be adjusted using the `.skew(...)`, `.skew_x(...)` or `.skew_y(...)` methods. They behave very similar to their CSS equivalents. /// - All outer edges can be toggled on or off using `.outer_edges(...)`. Alternatively you can use `.outer_edges_x(...)` or `.outer_edges_y(...)` to toggle the outer edges along an axis. /// /// # Example /// ``` /// # use bevy_gizmos::prelude::*; /// # use bevy_render::prelude::*; /// # use bevy_math::prelude::*; /// # use bevy_color::palettes::basic::GREEN; /// fn system(mut gizmos: Gizmos) { /// gizmos.grid( /// Vec3::ZERO, /// Quat::IDENTITY, /// UVec2::new(10, 10), /// Vec2::splat(2.), /// GREEN /// ) /// .skew_x(0.25) /// .outer_edges(); /// } /// # bevy_ecs::system::assert_is_system(system); /// ``` pub fn grid( &mut self, position: Vec3, rotation: Quat, cell_count: UVec2, spacing: Vec2, color: impl Into, ) -> GridBuilder2d<'_, 'w, 's, T> { GridBuilder2d { gizmos: self, position, rotation, spacing, cell_count, skew: Vec2::ZERO, outer_edges: [false, false], color: color.into(), } } /// Draw a 3D grid of voxel-like cells. /// /// This should be called for each frame the grid needs to be rendered. /// /// # Arguments /// /// - `position`: The center point of the grid. /// - `rotation`: defines the orientation of the grid, by default we assume the grid is contained in a plane parallel to the XY plane. /// - `cell_count`: defines the amount of cells in the x, y and z axes /// - `spacing`: defines the distance between cells along the x, y and z axes /// - `color`: color of the grid /// /// # Builder methods /// /// - The skew of the grid can be adjusted using the `.skew(...)`, `.skew_x(...)`, `.skew_y(...)` or `.skew_z(...)` methods. They behave very similar to their CSS equivalents. /// - All outer edges can be toggled on or off using `.outer_edges(...)`. Alternatively you can use `.outer_edges_x(...)`, `.outer_edges_y(...)` or `.outer_edges_z(...)` to toggle the outer edges along an axis. /// /// # Example /// ``` /// # use bevy_gizmos::prelude::*; /// # use bevy_render::prelude::*; /// # use bevy_math::prelude::*; /// # use bevy_color::palettes::basic::GREEN; /// fn system(mut gizmos: Gizmos) { /// gizmos.grid_3d( /// Vec3::ZERO, /// Quat::IDENTITY, /// UVec3::new(10, 2, 10), /// Vec3::splat(2.), /// GREEN /// ) /// .skew_x(0.25) /// .outer_edges(); /// } /// # bevy_ecs::system::assert_is_system(system); /// ``` pub fn grid_3d( &mut self, position: Vec3, rotation: Quat, cell_count: UVec3, spacing: Vec3, color: impl Into, ) -> GridBuilder3d<'_, 'w, 's, T> { GridBuilder3d { gizmos: self, position, rotation, spacing, cell_count, skew: Vec3::ZERO, outer_edges: [false, false, false], color: color.into(), } } /// Draw a grid in 2D. /// /// This should be called for each frame the grid needs to be rendered. /// /// # Arguments /// /// - `position`: The center point of the grid. /// - `rotation`: defines the orientation of the grid. /// - `cell_count`: defines the amount of cells in the x and y axes /// - `spacing`: defines the distance between cells along the x and y axes /// - `color`: color of the grid /// /// # Builder methods /// /// - The skew of the grid can be adjusted using the `.skew(...)`, `.skew_x(...)` or `.skew_y(...)` methods. They behave very similar to their CSS equivalents. /// - All outer edges can be toggled on or off using `.outer_edges(...)`. Alternatively you can use `.outer_edges_x(...)` or `.outer_edges_y(...)` to toggle the outer edges along an axis. /// /// # Example /// ``` /// # use bevy_gizmos::prelude::*; /// # use bevy_render::prelude::*; /// # use bevy_math::prelude::*; /// # use bevy_color::palettes::basic::GREEN; /// fn system(mut gizmos: Gizmos) { /// gizmos.grid_2d( /// Vec2::ZERO, /// 0.0, /// UVec2::new(10, 10), /// Vec2::splat(1.), /// GREEN /// ) /// .skew_x(0.25) /// .outer_edges(); /// } /// # bevy_ecs::system::assert_is_system(system); /// ``` pub fn grid_2d( &mut self, position: Vec2, rotation: f32, cell_count: UVec2, spacing: Vec2, color: impl Into, ) -> GridBuilder2d<'_, 'w, 's, T> { GridBuilder2d { gizmos: self, position: position.extend(0.), rotation: Quat::from_rotation_z(rotation), spacing, cell_count, skew: Vec2::ZERO, outer_edges: [false, false], color: color.into(), } } } #[allow(clippy::too_many_arguments)] fn draw_grid( gizmos: &mut Gizmos<'_, '_, T>, position: Vec3, rotation: Quat, spacing: Vec3, cell_count: UVec3, skew: Vec3, outer_edges: [bool; 3], color: LinearRgba, ) { if !gizmos.enabled { return; } // Offset between two adjacent grid cells along the x/y-axis and accounting for skew. let dx = spacing.x * Vec3::new(1., skew.y.tan(), skew.z.tan()) * if cell_count.x != 0 { 1. } else { 0. }; let dy = spacing.y * Vec3::new(skew.x.tan(), 1., skew.z.tan()) * if cell_count.y != 0 { 1. } else { 0. }; let dz = spacing.z * Vec3::new(skew.x.tan(), skew.y.tan(), 1.) * if cell_count.z != 0 { 1. } else { 0. }; // Bottom-left-front corner of the grid let grid_start = position - cell_count.x as f32 / 2.0 * dx - cell_count.y as f32 / 2.0 * dy - cell_count.z as f32 / 2.0 * dz; let line_count = UVec3::new( if outer_edges[0] { cell_count.x + 1 } else { cell_count.x.saturating_sub(1) }, if outer_edges[1] { cell_count.y + 1 } else { cell_count.y.saturating_sub(1) }, if outer_edges[2] { cell_count.z + 1 } else { cell_count.z.saturating_sub(1) }, ); let x_start = grid_start + if outer_edges[0] { Vec3::ZERO } else { dy + dz }; let y_start = grid_start + if outer_edges[1] { Vec3::ZERO } else { dx + dz }; let z_start = grid_start + if outer_edges[2] { Vec3::ZERO } else { dx + dy }; // Lines along the x direction let dline = dx * cell_count.x as f32; for iy in 0..line_count.y { let iy = iy as f32; for iz in 0..line_count.z { let iz = iz as f32; let line_start = x_start + iy * dy + iz * dz; let line_end = line_start + dline; gizmos.line(rotation * line_start, rotation * line_end, color); } } // Lines along the y direction let dline = dy * cell_count.y as f32; for ix in 0..line_count.x { let ix = ix as f32; for iz in 0..line_count.z { let iz = iz as f32; let line_start = y_start + ix * dx + iz * dz; let line_end = line_start + dline; gizmos.line(rotation * line_start, rotation * line_end, color); } } // Lines along the z direction let dline = dz * cell_count.z as f32; for ix in 0..line_count.x { let ix = ix as f32; for iy in 0..line_count.y { let iy = iy as f32; let line_start = z_start + ix * dx + iy * dy; let line_end = line_start + dline; gizmos.line(rotation * line_start, rotation * line_end, color); } } }