// TODO use common view binding #import bevy_render::view::View @group(0) @binding(0) var view: View; struct LineGizmoUniform { line_width: f32, depth_bias: f32, #ifdef SIXTEEN_BYTE_ALIGNMENT // WebGL2 structs must be 16 byte aligned. _padding: vec2, #endif } @group(1) @binding(0) var line_gizmo: LineGizmoUniform; struct VertexInput { @location(0) position_a: vec3, @location(1) position_b: vec3, @location(2) color_a: vec4, @location(3) color_b: vec4, @builtin(vertex_index) index: u32, }; struct VertexOutput { @builtin(position) clip_position: vec4, @location(0) color: vec4, @location(1) uv: f32, }; const EPSILON: f32 = 4.88e-04; @vertex fn vertex(vertex: VertexInput) -> VertexOutput { var positions = array, 6>( vec2(-0.5, 0.), vec2(-0.5, 1.), vec2(0.5, 1.), vec2(-0.5, 0.), vec2(0.5, 1.), vec2(0.5, 0.) ); let position = positions[vertex.index]; // algorithm based on https://wwwtyro.net/2019/11/18/instanced-lines.html var clip_a = view.clip_from_world * vec4(vertex.position_a, 1.); var clip_b = view.clip_from_world * vec4(vertex.position_b, 1.); // Manual near plane clipping to avoid errors when doing the perspective divide inside this shader. clip_a = clip_near_plane(clip_a, clip_b); clip_b = clip_near_plane(clip_b, clip_a); let clip = mix(clip_a, clip_b, position.y); let resolution = view.viewport.zw; let screen_a = resolution * (0.5 * clip_a.xy / clip_a.w + 0.5); let screen_b = resolution * (0.5 * clip_b.xy / clip_b.w + 0.5); let y_basis = normalize(screen_b - screen_a); let x_basis = vec2(-y_basis.y, y_basis.x); var color = mix(vertex.color_a, vertex.color_b, position.y); var line_width = line_gizmo.line_width; var alpha = 1.; var uv: f32; #ifdef PERSPECTIVE line_width /= clip.w; // get height of near clipping plane in world space let pos0 = view.view_from_clip * vec4(0, -1, 0, 1); // Bottom of the screen let pos1 = view.view_from_clip * vec4(0, 1, 0, 1); // Top of the screen let near_clipping_plane_height = length(pos0.xyz - pos1.xyz); // We can't use vertex.position_X because we may have changed the clip positions with clip_near_plane let position_a = view.world_from_clip * clip_a; let position_b = view.world_from_clip * clip_b; let world_distance = length(position_a.xyz - position_b.xyz); // Offset to compensate for moved clip positions. If removed dots on lines will slide when position a is ofscreen. let clipped_offset = length(position_a.xyz - vertex.position_a); uv = (clipped_offset + position.y * world_distance) * resolution.y / near_clipping_plane_height / line_gizmo.line_width; #else // Get the distance of b to the camera along camera axes let camera_b = view.view_from_clip * clip_b; // This differentiates between orthographic and perspective cameras. // For orthographic cameras no depth adaptment (depth_adaptment = 1) is needed. var depth_adaptment: f32; if (clip_b.w == 1.0) { depth_adaptment = 1.0; } else { depth_adaptment = -camera_b.z; } uv = position.y * depth_adaptment * length(screen_b - screen_a) / line_gizmo.line_width; #endif // Line thinness fade from https://acegikmo.com/shapes/docs/#anti-aliasing if line_width > 0.0 && line_width < 1. { color.a *= line_width; line_width = 1.; } let x_offset = line_width * position.x * x_basis; let screen = mix(screen_a, screen_b, position.y) + x_offset; var depth: f32; if line_gizmo.depth_bias >= 0. { depth = clip.z * (1. - line_gizmo.depth_bias); } else { // depth * (clip.w / depth)^-depth_bias. So that when -depth_bias is 1.0, this is equal to clip.w // and when equal to 0.0, it is exactly equal to depth. // the epsilon is here to prevent the depth from exceeding clip.w when -depth_bias = 1.0 // clip.w represents the near plane in homogeneous clip space in bevy, having a depth // of this value means nothing can be in front of this // The reason this uses an exponential function is that it makes it much easier for the // user to chose a value that is convenient for them depth = clip.z * exp2(-line_gizmo.depth_bias * log2(clip.w / clip.z - EPSILON)); } var clip_position = vec4(clip.w * ((2. * screen) / resolution - 1.), depth, clip.w); return VertexOutput(clip_position, color, uv); } fn clip_near_plane(a: vec4, b: vec4) -> vec4 { // Move a if a is behind the near plane and b is in front. if a.z > a.w && b.z <= b.w { // Interpolate a towards b until it's at the near plane. let distance_a = a.z - a.w; let distance_b = b.z - b.w; // Add an epsilon to the interpolator to ensure that the point is // not just behind the clip plane due to floating-point imprecision. let t = distance_a / (distance_a - distance_b) + EPSILON; return mix(a, b, t); } return a; } struct FragmentInput { @builtin(position) position: vec4, @location(0) color: vec4, @location(1) uv: f32, }; struct FragmentOutput { @location(0) color: vec4, }; @fragment fn fragment_solid(in: FragmentInput) -> FragmentOutput { return FragmentOutput(in.color); } @fragment fn fragment_dotted(in: FragmentInput) -> FragmentOutput { var alpha: f32; #ifdef PERSPECTIVE alpha = 1 - floor(in.uv % 2.0); #else alpha = 1 - floor((in.uv * in.position.w) % 2.0); #endif return FragmentOutput(vec4(in.color.xyz, in.color.w * alpha)); }