extern crate core; pub mod camera; pub mod color; pub mod extract_component; pub mod extract_resource; pub mod mesh; pub mod primitives; pub mod render_asset; pub mod render_graph; pub mod render_phase; pub mod render_resource; pub mod renderer; pub mod settings; pub mod texture; pub mod view; pub mod prelude { #[doc(hidden)] pub use crate::{ camera::{ Camera, OrthographicCameraBundle, OrthographicProjection, PerspectiveCameraBundle, PerspectiveProjection, }, color::Color, mesh::{shape, Mesh}, render_resource::Shader, texture::Image, view::{ComputedVisibility, Msaa, Visibility}, }; } use bevy_utils::tracing::debug; pub use once_cell; use crate::{ camera::CameraPlugin, color::Color, mesh::MeshPlugin, primitives::{CubemapFrusta, Frustum}, render_graph::RenderGraph, render_resource::{PipelineCache, Shader, ShaderLoader}, renderer::render_system, texture::ImagePlugin, view::{ViewPlugin, WindowRenderPlugin}, }; use bevy_app::{App, AppLabel, Plugin}; use bevy_asset::{AddAsset, AssetServer}; use bevy_ecs::prelude::*; use std::ops::{Deref, DerefMut}; /// Contains the default Bevy rendering backend based on wgpu. #[derive(Default)] pub struct RenderPlugin; /// The labels of the default App rendering stages. #[derive(Debug, Hash, PartialEq, Eq, Clone, StageLabel)] pub enum RenderStage { /// Extract data from the "app world" and insert it into the "render world". /// This step should be kept as short as possible to increase the "pipelining potential" for /// running the next frame while rendering the current frame. Extract, /// Prepare render resources from the extracted data for the GPU. Prepare, /// Create [`BindGroups`](crate::render_resource::BindGroup) that depend on /// [`Prepare`](RenderStage::Prepare) data and queue up draw calls to run during the /// [`Render`](RenderStage::Render) stage. Queue, // TODO: This could probably be moved in favor of a system ordering abstraction in Render or Queue /// Sort the [`RenderPhases`](crate::render_phase::RenderPhase) here. PhaseSort, /// Actual rendering happens here. /// In most cases, only the render backend should insert resources here. Render, /// Cleanup render resources here. Cleanup, } /// The Render App World. This is only available as a resource during the Extract step. #[derive(Default)] pub struct RenderWorld(World); impl Deref for RenderWorld { type Target = World; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for RenderWorld { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } /// A Label for the rendering sub-app. #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, AppLabel)] pub struct RenderApp; /// A "scratch" world used to avoid allocating new worlds every frame when /// swapping out the [`RenderWorld`]. #[derive(Default)] struct ScratchRenderWorld(World); impl Plugin for RenderPlugin { /// Initializes the renderer, sets up the [`RenderStage`](RenderStage) and creates the rendering sub-app. fn build(&self, app: &mut App) { let options = app .world .get_resource::() .cloned() .unwrap_or_default(); app.add_asset::() .add_debug_asset::() .init_asset_loader::() .init_debug_asset_loader::() .register_type::(); if let Some(backends) = options.backends { let instance = wgpu::Instance::new(backends); let surface = { let windows = app.world.resource_mut::(); let raw_handle = windows.get_primary().map(|window| unsafe { let handle = window.raw_window_handle().get_handle(); instance.create_surface(&handle) }); raw_handle }; let request_adapter_options = wgpu::RequestAdapterOptions { power_preference: options.power_preference, compatible_surface: surface.as_ref(), ..Default::default() }; let (device, queue, adapter_info) = futures_lite::future::block_on( renderer::initialize_renderer(&instance, &options, &request_adapter_options), ); debug!("Configured wgpu adapter Limits: {:#?}", device.limits()); debug!("Configured wgpu adapter Features: {:#?}", device.features()); app.insert_resource(device.clone()) .insert_resource(queue.clone()) .insert_resource(adapter_info.clone()) .init_resource::() .register_type::() .register_type::(); let pipeline_cache = PipelineCache::new(device.clone()); let asset_server = app.world.resource::().clone(); let mut render_app = App::empty(); let mut extract_stage = SystemStage::parallel().with_system(PipelineCache::extract_shaders); // don't apply buffers when the stage finishes running // extract stage runs on the app world, but the buffers are applied to the render world extract_stage.set_apply_buffers(false); render_app .add_stage(RenderStage::Extract, extract_stage) .add_stage(RenderStage::Prepare, SystemStage::parallel()) .add_stage(RenderStage::Queue, SystemStage::parallel()) .add_stage(RenderStage::PhaseSort, SystemStage::parallel()) .add_stage( RenderStage::Render, SystemStage::parallel() .with_system(PipelineCache::process_pipeline_queue_system) .with_system(render_system.exclusive_system().at_end()), ) .add_stage(RenderStage::Cleanup, SystemStage::parallel()) .insert_resource(instance) .insert_resource(device) .insert_resource(queue) .insert_resource(adapter_info) .insert_resource(pipeline_cache) .insert_resource(asset_server) .init_resource::(); app.add_sub_app(RenderApp, render_app, move |app_world, render_app| { #[cfg(feature = "trace")] let _render_span = bevy_utils::tracing::info_span!("renderer subapp").entered(); { #[cfg(feature = "trace")] let _stage_span = bevy_utils::tracing::info_span!("stage", name = "reserve_and_flush") .entered(); // reserve all existing app entities for use in render_app // they can only be spawned using `get_or_spawn()` let meta_len = app_world.entities().meta_len(); render_app .world .entities() .reserve_entities(meta_len as u32); // flushing as "invalid" ensures that app world entities aren't added as "empty archetype" entities by default // these entities cannot be accessed without spawning directly onto them // this _only_ works as expected because clear_entities() is called at the end of every frame. unsafe { render_app.world.entities_mut() }.flush_as_invalid(); } { #[cfg(feature = "trace")] let _stage_span = bevy_utils::tracing::info_span!("stage", name = "extract").entered(); // extract extract(app_world, render_app); } { #[cfg(feature = "trace")] let _stage_span = bevy_utils::tracing::info_span!("stage", name = "prepare").entered(); // prepare let prepare = render_app .schedule .get_stage_mut::(&RenderStage::Prepare) .unwrap(); prepare.run(&mut render_app.world); } { #[cfg(feature = "trace")] let _stage_span = bevy_utils::tracing::info_span!("stage", name = "queue").entered(); // queue let queue = render_app .schedule .get_stage_mut::(&RenderStage::Queue) .unwrap(); queue.run(&mut render_app.world); } { #[cfg(feature = "trace")] let _stage_span = bevy_utils::tracing::info_span!("stage", name = "sort").entered(); // phase sort let phase_sort = render_app .schedule .get_stage_mut::(&RenderStage::PhaseSort) .unwrap(); phase_sort.run(&mut render_app.world); } { #[cfg(feature = "trace")] let _stage_span = bevy_utils::tracing::info_span!("stage", name = "render").entered(); // render let render = render_app .schedule .get_stage_mut::(&RenderStage::Render) .unwrap(); render.run(&mut render_app.world); } { #[cfg(feature = "trace")] let _stage_span = bevy_utils::tracing::info_span!("stage", name = "cleanup").entered(); // cleanup let cleanup = render_app .schedule .get_stage_mut::(&RenderStage::Cleanup) .unwrap(); cleanup.run(&mut render_app.world); } { #[cfg(feature = "trace")] let _stage_span = bevy_utils::tracing::info_span!("stage", name = "clear_entities").entered(); render_app.world.clear_entities(); } }); } app.add_plugin(WindowRenderPlugin) .add_plugin(CameraPlugin) .add_plugin(ViewPlugin) .add_plugin(MeshPlugin) // NOTE: Load this after renderer initialization so that it knows about the supported // compressed texture formats .add_plugin(ImagePlugin); } } /// Executes the [`Extract`](RenderStage::Extract) stage of the renderer. /// This updates the render world with the extracted ECS data of the current frame. fn extract(app_world: &mut World, render_app: &mut App) { let extract = render_app .schedule .get_stage_mut::(&RenderStage::Extract) .unwrap(); // temporarily add the render world to the app world as a resource let scratch_world = app_world.remove_resource::().unwrap(); let render_world = std::mem::replace(&mut render_app.world, scratch_world.0); app_world.insert_resource(RenderWorld(render_world)); extract.run(app_world); // add the render world back to the render app let render_world = app_world.remove_resource::().unwrap(); let scratch_world = std::mem::replace(&mut render_app.world, render_world.0); app_world.insert_resource(ScratchRenderWorld(scratch_world)); extract.apply_buffers(&mut render_app.world); }