//! Helpers for working with Bevy reflection. use crate::TypeInfo; use bevy_utils::{FixedState, NoOpTypeIdHash, TypeIdMap}; use std::{ any::{Any, TypeId}, hash::BuildHasher, sync::{OnceLock, PoisonError, RwLock}, }; /// A type that can be stored in a ([`Non`])[`GenericTypeCell`]. /// /// [`Non`]: NonGenericTypeCell pub trait TypedProperty: sealed::Sealed { type Stored: 'static; } /// Used to store a [`String`] in a [`GenericTypePathCell`] as part of a [`TypePath`] implementation. /// /// [`TypePath`]: crate::TypePath pub struct TypePathComponent; mod sealed { use super::{TypeInfo, TypePathComponent, TypedProperty}; pub trait Sealed {} impl Sealed for TypeInfo {} impl Sealed for TypePathComponent {} impl TypedProperty for TypeInfo { type Stored = Self; } impl TypedProperty for TypePathComponent { type Stored = String; } } /// A container for [`TypeInfo`] over non-generic types, allowing instances to be stored statically. /// /// This is specifically meant for use with _non_-generic types. If your type _is_ generic, /// then use [`GenericTypeCell`] instead. Otherwise, it will not take into account all /// monomorphizations of your type. /// /// Non-generic [`TypePath`]s should be trivially generated with string literals and [`concat!`]. /// /// ## Example /// /// ``` /// # use std::any::Any; /// # use bevy_reflect::{DynamicTypePath, NamedField, Reflect, ReflectMut, ReflectOwned, ReflectRef, StructInfo, Typed, TypeInfo, TypePath}; /// use bevy_reflect::utility::NonGenericTypeInfoCell; /// /// struct Foo { /// bar: i32 /// } /// /// impl Typed for Foo { /// fn type_info() -> &'static TypeInfo { /// static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new(); /// CELL.get_or_set(|| { /// let fields = [NamedField::new::("bar")]; /// let info = StructInfo::new::(&fields); /// TypeInfo::Struct(info) /// }) /// } /// } /// # impl TypePath for Foo { /// # fn type_path() -> &'static str { todo!() } /// # fn short_type_path() -> &'static str { todo!() } /// # } /// # impl Reflect for Foo { /// # fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() } /// # fn into_any(self: Box) -> Box { todo!() } /// # fn as_any(&self) -> &dyn Any { todo!() } /// # fn as_any_mut(&mut self) -> &mut dyn Any { todo!() } /// # fn into_reflect(self: Box) -> Box { todo!() } /// # fn as_reflect(&self) -> &dyn Reflect { todo!() } /// # fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() } /// # fn apply(&mut self, value: &dyn Reflect) { todo!() } /// # fn set(&mut self, value: Box) -> Result<(), Box> { todo!() } /// # fn reflect_ref(&self) -> ReflectRef { todo!() } /// # fn reflect_mut(&mut self) -> ReflectMut { todo!() } /// # fn reflect_owned(self: Box) -> ReflectOwned { todo!() } /// # fn clone_value(&self) -> Box { todo!() } /// # } /// ``` /// /// [`TypePath`]: crate::TypePath pub struct NonGenericTypeCell(OnceLock); /// See [`NonGenericTypeCell`]. pub type NonGenericTypeInfoCell = NonGenericTypeCell; impl NonGenericTypeCell { /// Initialize a [`NonGenericTypeCell`] for non-generic types. pub const fn new() -> Self { Self(OnceLock::new()) } /// Returns a reference to the [`TypedProperty`] stored in the cell. /// /// If there is no entry found, a new one will be generated from the given function. pub fn get_or_set(&self, f: F) -> &T::Stored where F: FnOnce() -> T::Stored, { self.0.get_or_init(f) } } /// A container for [`TypedProperty`] over generic types, allowing instances to be stored statically. /// /// This is specifically meant for use with generic types. If your type isn't generic, /// then use [`NonGenericTypeCell`] instead as it should be much more performant. /// /// `#[derive(TypePath)]` and [`impl_type_path`] should always be used over [`GenericTypePathCell`] /// where possible. /// /// ## Examples /// /// Implementing [`TypeInfo`] with generics. /// /// ``` /// # use std::any::Any; /// # use bevy_reflect::{DynamicTypePath, Reflect, ReflectMut, ReflectOwned, ReflectRef, TupleStructInfo, Typed, TypeInfo, TypePath, UnnamedField}; /// use bevy_reflect::utility::GenericTypeInfoCell; /// /// struct Foo(T); /// /// impl Typed for Foo { /// fn type_info() -> &'static TypeInfo { /// static CELL: GenericTypeInfoCell = GenericTypeInfoCell::new(); /// CELL.get_or_insert::(|| { /// let fields = [UnnamedField::new::(0)]; /// let info = TupleStructInfo::new::(&fields); /// TypeInfo::TupleStruct(info) /// }) /// } /// } /// # impl TypePath for Foo { /// # fn type_path() -> &'static str { todo!() } /// # fn short_type_path() -> &'static str { todo!() } /// # } /// # impl Reflect for Foo { /// # fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() } /// # fn into_any(self: Box) -> Box { todo!() } /// # fn as_any(&self) -> &dyn Any { todo!() } /// # fn as_any_mut(&mut self) -> &mut dyn Any { todo!() } /// # fn into_reflect(self: Box) -> Box { todo!() } /// # fn as_reflect(&self) -> &dyn Reflect { todo!() } /// # fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() } /// # fn apply(&mut self, value: &dyn Reflect) { todo!() } /// # fn set(&mut self, value: Box) -> Result<(), Box> { todo!() } /// # fn reflect_ref(&self) -> ReflectRef { todo!() } /// # fn reflect_mut(&mut self) -> ReflectMut { todo!() } /// # fn reflect_owned(self: Box) -> ReflectOwned { todo!() } /// # fn clone_value(&self) -> Box { todo!() } /// # } /// ``` /// /// Implementing [`TypePath`] with generics. /// /// ``` /// # use std::any::Any; /// # use bevy_reflect::TypePath; /// use bevy_reflect::utility::GenericTypePathCell; /// /// struct Foo(T); /// /// impl TypePath for Foo { /// fn type_path() -> &'static str { /// static CELL: GenericTypePathCell = GenericTypePathCell::new(); /// CELL.get_or_insert::(|| format!("my_crate::foo::Foo<{}>", T::type_path())) /// } /// /// fn short_type_path() -> &'static str { /// static CELL: GenericTypePathCell = GenericTypePathCell::new(); /// CELL.get_or_insert::(|| format!("Foo<{}>", T::short_type_path())) /// } /// /// fn type_ident() -> Option<&'static str> { /// Some("Foo") /// } /// /// fn module_path() -> Option<&'static str> { /// Some("my_crate::foo") /// } /// /// fn crate_name() -> Option<&'static str> { /// Some("my_crate") /// } /// } /// ``` /// [`impl_type_path`]: crate::impl_type_path /// [`TypePath`]: crate::TypePath pub struct GenericTypeCell(RwLock>); /// See [`GenericTypeCell`]. pub type GenericTypeInfoCell = GenericTypeCell; /// See [`GenericTypeCell`]. pub type GenericTypePathCell = GenericTypeCell; impl GenericTypeCell { /// Initialize a [`GenericTypeCell`] for generic types. pub const fn new() -> Self { Self(RwLock::new(TypeIdMap::with_hasher(NoOpTypeIdHash))) } /// Returns a reference to the [`TypedProperty`] stored in the cell. /// /// This method will then return the correct [`TypedProperty`] reference for the given type `T`. /// If there is no entry found, a new one will be generated from the given function. pub fn get_or_insert(&self, f: F) -> &T::Stored where G: Any + ?Sized, F: FnOnce() -> T::Stored, { let type_id = TypeId::of::(); // Put in a separate scope, so `mapping` is dropped before `f`, // since `f` might want to call `get_or_insert` recursively // and we don't want a deadlock! { let mapping = self.0.read().unwrap_or_else(PoisonError::into_inner); if let Some(info) = mapping.get(&type_id) { return info; } } let value = f(); let mut mapping = self.0.write().unwrap_or_else(PoisonError::into_inner); mapping .entry(type_id) .insert({ // We leak here in order to obtain a `&'static` reference. // Otherwise, we won't be able to return a reference due to the `RwLock`. // This should be okay, though, since we expect it to remain statically // available over the course of the application. Box::leak(Box::new(value)) }) .get() } } /// Deterministic fixed state hasher to be used by implementors of [`Reflect::reflect_hash`]. /// /// Hashes should be deterministic across processes so hashes can be used as /// checksums for saved scenes, rollback snapshots etc. This function returns /// such a hasher. /// /// [`Reflect::reflect_hash`]: crate::Reflect #[inline] pub fn reflect_hasher() -> bevy_utils::AHasher { FixedState.build_hasher() }