#import bevy_pbr::prepass_bindings #import bevy_pbr::mesh_functions // Most of these attributes are not used in the default prepass fragment shader, but they are still needed so we can // pass them to custom prepass shaders like pbr_prepass.wgsl. struct Vertex { @location(0) position: vec3<f32>, #ifdef VERTEX_UVS @location(1) uv: vec2<f32>, #endif // VERTEX_UVS #ifdef NORMAL_PREPASS @location(2) normal: vec3<f32>, #ifdef VERTEX_TANGENTS @location(3) tangent: vec4<f32>, #endif // VERTEX_TANGENTS #endif // NORMAL_PREPASS #ifdef SKINNED @location(4) joint_indices: vec4<u32>, @location(5) joint_weights: vec4<f32>, #endif // SKINNED } struct VertexOutput { @builtin(position) clip_position: vec4<f32>, #ifdef VERTEX_UVS @location(0) uv: vec2<f32>, #endif // VERTEX_UVS #ifdef NORMAL_PREPASS @location(1) world_normal: vec3<f32>, #ifdef VERTEX_TANGENTS @location(2) world_tangent: vec4<f32>, #endif // VERTEX_TANGENTS #endif // NORMAL_PREPASS #ifdef MOTION_VECTOR_PREPASS @location(3) world_position: vec4<f32>, @location(4) previous_world_position: vec4<f32>, #endif // MOTION_VECTOR_PREPASS } @vertex fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; #ifdef SKINNED var model = skin_model(vertex.joint_indices, vertex.joint_weights); #else // SKINNED var model = mesh.model; #endif // SKINNED out.clip_position = mesh_position_local_to_clip(model, vec4(vertex.position, 1.0)); #ifdef DEPTH_CLAMP_ORTHO out.clip_position.z = min(out.clip_position.z, 1.0); #endif // DEPTH_CLAMP_ORTHO #ifdef VERTEX_UVS out.uv = vertex.uv; #endif // VERTEX_UVS #ifdef NORMAL_PREPASS #ifdef SKINNED out.world_normal = skin_normals(model, vertex.normal); #else // SKINNED out.world_normal = mesh_normal_local_to_world(vertex.normal); #endif // SKINNED #ifdef VERTEX_TANGENTS out.world_tangent = mesh_tangent_local_to_world(model, vertex.tangent); #endif // VERTEX_TANGENTS #endif // NORMAL_PREPASS #ifdef MOTION_VECTOR_PREPASS out.world_position = mesh_position_local_to_world(model, vec4<f32>(vertex.position, 1.0)); out.previous_world_position = mesh_position_local_to_world(mesh.previous_model, vec4<f32>(vertex.position, 1.0)); #endif // MOTION_VECTOR_PREPASS return out; } #ifdef PREPASS_FRAGMENT struct FragmentInput { #ifdef VERTEX_UVS @location(0) uv: vec2<f32>, #endif // VERTEX_UVS #ifdef NORMAL_PREPASS @location(1) world_normal: vec3<f32>, #endif // NORMAL_PREPASS #ifdef MOTION_VECTOR_PREPASS @location(3) world_position: vec4<f32>, @location(4) previous_world_position: vec4<f32>, #endif // MOTION_VECTOR_PREPASS } struct FragmentOutput { #ifdef NORMAL_PREPASS @location(0) normal: vec4<f32>, #endif // NORMAL_PREPASS #ifdef MOTION_VECTOR_PREPASS @location(1) motion_vector: vec2<f32>, #endif // MOTION_VECTOR_PREPASS } @fragment fn fragment(in: FragmentInput) -> FragmentOutput { var out: FragmentOutput; #ifdef NORMAL_PREPASS out.normal = vec4(in.world_normal * 0.5 + vec3(0.5), 1.0); #endif #ifdef MOTION_VECTOR_PREPASS let clip_position_t = view.unjittered_view_proj * in.world_position; let clip_position = clip_position_t.xy / clip_position_t.w; let previous_clip_position_t = previous_view_proj * in.previous_world_position; let previous_clip_position = previous_clip_position_t.xy / previous_clip_position_t.w; // These motion vectors are used as offsets to UV positions and are stored // in the range -1,1 to allow offsetting from the one corner to the // diagonally-opposite corner in UV coordinates, in either direction. // A difference between diagonally-opposite corners of clip space is in the // range -2,2, so this needs to be scaled by 0.5. And the V direction goes // down where clip space y goes up, so y needs to be flipped. out.motion_vector = (clip_position - previous_clip_position) * vec2(0.5, -0.5); #endif // MOTION_VECTOR_PREPASS return out; } #endif // PREPASS_FRAGMENT