use bevy_asset::{Asset, Handle}; use bevy_reflect::{impl_type_path, Reflect}; use bevy_render::{ mesh::MeshVertexBufferLayoutRef, render_asset::RenderAssets, render_resource::{ AsBindGroup, AsBindGroupError, BindGroupLayout, RenderPipelineDescriptor, Shader, ShaderRef, SpecializedMeshPipelineError, UnpreparedBindGroup, }, renderer::RenderDevice, texture::{FallbackImage, Image}, }; use crate::{Material, MaterialPipeline, MaterialPipelineKey, MeshPipeline, MeshPipelineKey}; pub struct MaterialExtensionPipeline { pub mesh_pipeline: MeshPipeline, pub material_layout: BindGroupLayout, pub vertex_shader: Option>, pub fragment_shader: Option>, } pub struct MaterialExtensionKey { pub mesh_key: MeshPipelineKey, pub bind_group_data: E::Data, } /// A subset of the `Material` trait for defining extensions to a base `Material`, such as the builtin `StandardMaterial`. /// A user type implementing the trait should be used as the `E` generic param in an `ExtendedMaterial` struct. pub trait MaterialExtension: Asset + AsBindGroup + Clone + Sized { /// Returns this material's vertex shader. If [`ShaderRef::Default`] is returned, the base material mesh vertex shader /// will be used. fn vertex_shader() -> ShaderRef { ShaderRef::Default } /// Returns this material's fragment shader. If [`ShaderRef::Default`] is returned, the base material mesh fragment shader /// will be used. #[allow(unused_variables)] fn fragment_shader() -> ShaderRef { ShaderRef::Default } /// Returns this material's prepass vertex shader. If [`ShaderRef::Default`] is returned, the base material prepass vertex shader /// will be used. fn prepass_vertex_shader() -> ShaderRef { ShaderRef::Default } /// Returns this material's prepass fragment shader. If [`ShaderRef::Default`] is returned, the base material prepass fragment shader /// will be used. #[allow(unused_variables)] fn prepass_fragment_shader() -> ShaderRef { ShaderRef::Default } /// Returns this material's deferred vertex shader. If [`ShaderRef::Default`] is returned, the base material deferred vertex shader /// will be used. fn deferred_vertex_shader() -> ShaderRef { ShaderRef::Default } /// Returns this material's prepass fragment shader. If [`ShaderRef::Default`] is returned, the base material deferred fragment shader /// will be used. #[allow(unused_variables)] fn deferred_fragment_shader() -> ShaderRef { ShaderRef::Default } /// Customizes the default [`RenderPipelineDescriptor`] for a specific entity using the entity's /// [`MaterialPipelineKey`] and [`MeshVertexBufferLayoutRef`] as input. /// Specialization for the base material is applied before this function is called. #[allow(unused_variables)] #[inline] fn specialize( pipeline: &MaterialExtensionPipeline, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayoutRef, key: MaterialExtensionKey, ) -> Result<(), SpecializedMeshPipelineError> { Ok(()) } } /// A material that extends a base [`Material`] with additional shaders and data. /// /// The data from both materials will be combined and made available to the shader /// so that shader functions built for the base material (and referencing the base material /// bindings) will work as expected, and custom alterations based on custom data can also be used. /// /// If the extension `E` returns a non-default result from `vertex_shader()` it will be used in place of the base /// material's vertex shader. /// /// If the extension `E` returns a non-default result from `fragment_shader()` it will be used in place of the base /// fragment shader. /// /// When used with `StandardMaterial` as the base, all the standard material fields are /// present, so the `pbr_fragment` shader functions can be called from the extension shader (see /// the `extended_material` example). #[derive(Asset, Clone, Reflect)] #[reflect(type_path = false)] pub struct ExtendedMaterial { pub base: B, pub extension: E, } // We don't use the `TypePath` derive here due to a bug where `#[reflect(type_path = false)]` // causes the `TypePath` derive to not generate an implementation. impl_type_path!((in bevy_pbr::extended_material) ExtendedMaterial); impl AsBindGroup for ExtendedMaterial { type Data = (::Data, ::Data); fn unprepared_bind_group( &self, layout: &BindGroupLayout, render_device: &RenderDevice, images: &RenderAssets, fallback_image: &FallbackImage, ) -> Result, AsBindGroupError> { // add together the bindings of the base material and the user material let UnpreparedBindGroup { mut bindings, data: base_data, } = B::unprepared_bind_group(&self.base, layout, render_device, images, fallback_image)?; let extended_bindgroup = E::unprepared_bind_group( &self.extension, layout, render_device, images, fallback_image, )?; bindings.extend(extended_bindgroup.bindings); Ok(UnpreparedBindGroup { bindings, data: (base_data, extended_bindgroup.data), }) } fn bind_group_layout_entries( render_device: &RenderDevice, ) -> Vec where Self: Sized, { // add together the bindings of the standard material and the user material let mut entries = B::bind_group_layout_entries(render_device); entries.extend(E::bind_group_layout_entries(render_device)); entries } } impl Material for ExtendedMaterial { fn vertex_shader() -> ShaderRef { match E::vertex_shader() { ShaderRef::Default => B::vertex_shader(), specified => specified, } } fn fragment_shader() -> ShaderRef { match E::fragment_shader() { ShaderRef::Default => B::fragment_shader(), specified => specified, } } fn alpha_mode(&self) -> crate::AlphaMode { B::alpha_mode(&self.base) } fn opaque_render_method(&self) -> crate::OpaqueRendererMethod { B::opaque_render_method(&self.base) } fn depth_bias(&self) -> f32 { B::depth_bias(&self.base) } fn reads_view_transmission_texture(&self) -> bool { B::reads_view_transmission_texture(&self.base) } fn prepass_vertex_shader() -> ShaderRef { match E::prepass_vertex_shader() { ShaderRef::Default => B::prepass_vertex_shader(), specified => specified, } } fn prepass_fragment_shader() -> ShaderRef { match E::prepass_fragment_shader() { ShaderRef::Default => B::prepass_fragment_shader(), specified => specified, } } fn deferred_vertex_shader() -> ShaderRef { match E::deferred_vertex_shader() { ShaderRef::Default => B::deferred_vertex_shader(), specified => specified, } } fn deferred_fragment_shader() -> ShaderRef { match E::deferred_fragment_shader() { ShaderRef::Default => B::deferred_fragment_shader(), specified => specified, } } fn specialize( pipeline: &MaterialPipeline, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayoutRef, key: MaterialPipelineKey, ) -> Result<(), SpecializedMeshPipelineError> { // Call the base material's specialize function let MaterialPipeline:: { mesh_pipeline, material_layout, vertex_shader, fragment_shader, .. } = pipeline.clone(); let base_pipeline = MaterialPipeline:: { mesh_pipeline, material_layout, vertex_shader, fragment_shader, marker: Default::default(), }; let base_key = MaterialPipelineKey:: { mesh_key: key.mesh_key, bind_group_data: key.bind_group_data.0, }; B::specialize(&base_pipeline, descriptor, layout, base_key)?; // Call the extended material's specialize function afterwards let MaterialPipeline:: { mesh_pipeline, material_layout, vertex_shader, fragment_shader, .. } = pipeline.clone(); E::specialize( &MaterialExtensionPipeline { mesh_pipeline, material_layout, vertex_shader, fragment_shader, }, descriptor, layout, MaterialExtensionKey { mesh_key: key.mesh_key, bind_group_data: key.bind_group_data.1, }, ) } }