mod support; use glam::f32::{quat, Mat3, Mat4, Quat, Vec3, Vec4}; use support::{deg, rad}; #[test] fn test_quat_align() { use std::mem; assert_eq!(16, mem::size_of::()); if cfg!(feature = "scalar-math") { assert_eq!(4, mem::align_of::()); } else { assert_eq!(16, mem::align_of::()); } } #[test] fn test_quat_rotation() { let zero = deg(0.0); let yaw = deg(30.0); let pitch = deg(60.0); let roll = deg(90.0); let y0 = Quat::from_rotation_y(yaw); assert!(y0.is_normalized()); let (axis, angle) = y0.to_axis_angle(); assert_approx_eq!(axis, Vec3::unit_y(), 1.0e-6); assert_approx_eq!(angle, yaw); let y1 = Quat::from_rotation_ypr(yaw, zero, zero); assert_approx_eq!(y0, y1); let y2 = Quat::from_axis_angle(Vec3::unit_y(), yaw); assert_approx_eq!(y0, y2); let y3 = Quat::from_rotation_mat3(&Mat3::from_rotation_y(yaw)); assert_approx_eq!(y0, y3); let y4 = Quat::from_rotation_mat3(&Mat3::from_quat(y0)); assert_approx_eq!(y0, y4); let x0 = Quat::from_rotation_x(pitch); assert!(x0.is_normalized()); let (axis, angle) = x0.to_axis_angle(); assert_approx_eq!(axis, Vec3::unit_x()); assert_approx_eq!(angle, pitch); let x1 = Quat::from_rotation_ypr(zero, pitch, zero); assert_approx_eq!(x0, x1); let x2 = Quat::from_axis_angle(Vec3::unit_x(), pitch); assert_approx_eq!(x0, x2); let x3 = Quat::from_rotation_mat4(&Mat4::from_rotation_x(deg(180.0))); assert!(x3.is_normalized()); assert_approx_eq!(Quat::from_rotation_x(deg(180.0)), x3); let z0 = Quat::from_rotation_z(roll); assert!(z0.is_normalized()); let (axis, angle) = z0.to_axis_angle(); assert_approx_eq!(axis, Vec3::unit_z()); assert_approx_eq!(angle, roll); let z1 = Quat::from_rotation_ypr(zero, zero, roll); assert_approx_eq!(z0, z1); let z2 = Quat::from_axis_angle(Vec3::unit_z(), roll); assert_approx_eq!(z0, z2); let z3 = Quat::from_rotation_mat4(&Mat4::from_rotation_z(roll)); assert_approx_eq!(z0, z3); let yx0 = y0 * x0; assert!(yx0.is_normalized()); let yx1 = Quat::from_rotation_ypr(yaw, pitch, zero); assert_approx_eq!(yx0, yx1); let yxz0 = y0 * x0 * z0; assert!(yxz0.is_normalized()); let yxz1 = Quat::from_rotation_ypr(yaw, pitch, roll); assert_approx_eq!(yxz0, yxz1); // use the conjugate of z0 to remove the rotation from yxz0 let yx2 = yxz0 * z0.conjugate(); assert_approx_eq!(yx0, yx2); let yxz2 = Quat::from_rotation_mat4(&Mat4::from_quat(yxz0)); assert_approx_eq!(yxz0, yxz2); // if near identity, just returns x axis and 0 rotation let (axis, angle) = Quat::identity().to_axis_angle(); assert_eq!(axis, Vec3::unit_x()); assert_eq!(angle, rad(0.0)); } #[test] fn test_quat_new() { let ytheta = deg(45.0); let q0 = Quat::from_rotation_y(ytheta); let t1 = (0.0, (ytheta * 0.5).sin(), 0.0, (ytheta * 0.5).cos()); assert_eq!(q0, t1.into()); let q1 = Quat::from(t1); assert_eq!(t1, q1.into()); assert_eq!(q0, quat(t1.0, t1.1, t1.2, t1.3)); let a1 = [0.0, (ytheta * 0.5).sin(), 0.0, (ytheta * 0.5).cos()]; assert_eq!(q0, a1.into()); let q1 = Quat::from(a1); let a2: [f32; 4] = q1.into(); assert_eq!(a1, a2); } #[test] fn test_quat_mul_vec() { let qrz = Quat::from_rotation_z(deg(90.0)); assert_approx_eq!(Vec3::unit_y(), qrz * Vec3::unit_x()); assert_approx_eq!(Vec3::unit_y(), -qrz * Vec3::unit_x()); assert_approx_eq!(-Vec3::unit_x(), qrz * Vec3::unit_y()); assert_approx_eq!(-Vec3::unit_x(), -qrz * Vec3::unit_y()); // check vec3 * mat3 is the same let mrz = Mat3::from_quat(qrz); assert_approx_eq!(Vec3::unit_y(), mrz * Vec3::unit_x()); // assert_approx_eq!(Vec3::unit_y(), -mrz * Vec3::unit_x()); assert_approx_eq!(-Vec3::unit_x(), mrz * Vec3::unit_y()); let qrx = Quat::from_rotation_x(deg(90.0)); assert_approx_eq!(Vec3::unit_x(), qrx * Vec3::unit_x()); assert_approx_eq!(Vec3::unit_x(), -qrx * Vec3::unit_x()); assert_approx_eq!(Vec3::unit_z(), qrx * Vec3::unit_y()); assert_approx_eq!(Vec3::unit_z(), -qrx * Vec3::unit_y()); // check vec3 * mat3 is the same let mrx = Mat3::from_quat(qrx); assert_approx_eq!(Vec3::unit_x(), mrx * Vec3::unit_x()); assert_approx_eq!(Vec3::unit_z(), mrx * Vec3::unit_y()); let qrxz = qrz * qrx; assert_approx_eq!(Vec3::unit_y(), qrxz * Vec3::unit_x()); assert_approx_eq!(Vec3::unit_z(), qrxz * Vec3::unit_y()); let mrxz = mrz * mrx; assert_approx_eq!(Vec3::unit_y(), mrxz * Vec3::unit_x()); assert_approx_eq!(Vec3::unit_z(), mrxz * Vec3::unit_y()); let qrzx = qrx * qrz; assert_approx_eq!(Vec3::unit_z(), qrzx * Vec3::unit_x()); assert_approx_eq!(-Vec3::unit_x(), qrzx * Vec3::unit_y()); let mrzx = qrx * qrz; assert_approx_eq!(Vec3::unit_z(), mrzx * Vec3::unit_x()); assert_approx_eq!(-Vec3::unit_x(), mrzx * Vec3::unit_y()); } #[test] fn test_quat_funcs() { let q0 = Quat::from_rotation_ypr(deg(45.0), deg(180.0), deg(90.0)); assert!(q0.is_normalized()); assert_approx_eq!(q0.length_squared(), 1.0); assert_approx_eq!(q0.length(), 1.0); assert_approx_eq!(q0.length_reciprocal(), 1.0); assert_approx_eq!(q0, q0.normalize()); assert_approx_eq!(q0.dot(q0), 1.0); assert_approx_eq!(q0.dot(q0), 1.0); let q1 = Quat::from(Vec4::from(q0) * 2.0); assert!(!q1.is_normalized()); assert_approx_eq!(q1.length_squared(), 4.0, 1.0e-6); assert_approx_eq!(q1.length(), 2.0); assert_approx_eq!(q1.length_reciprocal(), 0.5); assert_approx_eq!(q0, q1.normalize()); assert_approx_eq!(q0.dot(q1), 2.0, 1.0e-6); } #[test] fn test_quat_lerp() { let q0 = Quat::from_rotation_y(deg(0.0)); let q1 = Quat::from_rotation_y(deg(90.0)); assert_approx_eq!(q0, q0.lerp(q1, 0.0)); assert_approx_eq!(q1, q0.lerp(q1, 1.0)); assert_approx_eq!(Quat::from_rotation_y(deg(45.0)), q0.lerp(q1, 0.5)); } #[test] fn test_quat_slerp() { let q0 = Quat::from_rotation_y(deg(0.0)); let q1 = Quat::from_rotation_y(deg(90.0)); assert_approx_eq!(q0, q0.slerp(q1, 0.0), 1.0e-3); assert_approx_eq!(q1, q0.slerp(q1, 1.0), 1.0e-3); assert_approx_eq!(Quat::from_rotation_y(deg(45.0)), q0.slerp(q1, 0.5), 1.0e-3); } #[test] fn test_quat_slerp_constant_speed() { let step = 0.01; let mut s = 0.0; while s <= 1.0 { let q0 = Quat::from_rotation_y(deg(0.0)); let q1 = Quat::from_rotation_y(deg(90.0)); assert_approx_eq!( Quat::from_rotation_y(deg(s * 90.0)), q0.slerp(q1, s), 1.0e-3 ); s += step; } } #[test] fn test_quat_fmt() { let a = Quat::identity(); #[cfg(all(target_feature = "sse2", not(feature = "scalar-math")))] assert_eq!(format!("{:?}", a), "Quat(__m128(0.0, 0.0, 0.0, 1.0))"); #[cfg(any(not(target_feature = "sse2"), feature = "scalar-math"))] assert_eq!(format!("{:?}", a), "Quat(0.0, 0.0, 0.0, 1.0)"); // assert_eq!( // format!("{:#?}", a), // "Quat(\n 1.0,\n 2.0,\n 3.0,\n 4.0\n)" // ); assert_eq!(format!("{}", a), "[0, 0, 0, 1]"); } #[test] fn test_quat_identity() { let identity = Quat::identity(); assert!(identity.is_near_identity()); assert!(identity.is_normalized()); assert_eq!(identity, Quat::from_xyzw(0.0, 0.0, 0.0, 1.0)); assert_eq!(identity, identity * identity); let q = Quat::from_rotation_ypr(deg(10.0), deg(-10.0), deg(45.0)); assert_eq!(q, q * identity); assert_eq!(q, identity * q); assert_eq!(identity, Quat::default()); } #[test] fn test_quat_slice() { let a: [f32; 4] = Quat::from_rotation_ypr(deg(30.0), deg(60.0), deg(90.0)).into(); let b = Quat::from_slice_unaligned(&a); let c: [f32; 4] = b.into(); assert_eq!(a, c); let mut d = [0.0, 0.0, 0.0, 0.0]; b.write_to_slice_unaligned(&mut d[..]); assert_eq!(a, d); } #[test] fn test_quat_elements() { let x = 1.0; let y = 2.0; let z = 3.0; let w = 4.0; let a = Quat::from_xyzw(x, y, z, w); assert!(a.x() == x); assert!(a.y() == y); assert!(a.z() == z); assert!(a.w() == w); } #[cfg(feature = "serde")] #[test] fn test_quat_serde() { let a = Quat::from_xyzw(1.0, 2.0, 3.0, 4.0); let serialized = serde_json::to_string(&a).unwrap(); assert_eq!(serialized, "[1.0,2.0,3.0,4.0]"); let deserialized = serde_json::from_str(&serialized).unwrap(); assert_eq!(a, deserialized); let deserialized = serde_json::from_str::("[]"); assert!(deserialized.is_err()); let deserialized = serde_json::from_str::("[1.0]"); assert!(deserialized.is_err()); let deserialized = serde_json::from_str::("[1.0,2.0]"); assert!(deserialized.is_err()); let deserialized = serde_json::from_str::("[1.0,2.0,3.0]"); assert!(deserialized.is_err()); let deserialized = serde_json::from_str::("[1.0,2.0,3.0,4.0,5.0]"); assert!(deserialized.is_err()); } #[cfg(feature = "rand")] #[test] fn test_quat_rand() { use rand::{Rng, SeedableRng}; use rand_xoshiro::Xoshiro256Plus; let mut rng1 = Xoshiro256Plus::seed_from_u64(0); let a: Quat = rng1.gen(); assert!(a.is_normalized()); let mut rng2 = Xoshiro256Plus::seed_from_u64(0); let b: Quat = rng2.gen(); assert_eq!(a, b); }