use crate::generics::impl_generic_info_methods; use crate::{ self as bevy_reflect, type_info::impl_type_methods, utility::reflect_hasher, ApplyError, Generics, MaybeTyped, PartialReflect, Reflect, ReflectKind, ReflectMut, ReflectOwned, ReflectRef, Type, TypeInfo, TypePath, }; use alloc::{boxed::Box, vec::Vec}; use bevy_reflect_derive::impl_type_path; use core::{ any::Any, fmt::{Debug, Formatter}, hash::{Hash, Hasher}, }; /// A trait used to power [array-like] operations via [reflection]. /// /// This corresponds to true Rust arrays like `[T; N]`, /// but also to any fixed-size linear sequence types. /// It is expected that implementors of this trait uphold this contract /// and maintain a fixed size as returned by the [`Array::len`] method. /// /// Due to the [type-erasing] nature of the reflection API as a whole, /// this trait does not make any guarantees that the implementor's elements /// are homogeneous (i.e. all the same type). /// /// This trait has a blanket implementation over Rust arrays of up to 32 items. /// This implementation can technically contain more than 32, /// but the blanket [`GetTypeRegistration`] is only implemented up to the 32 /// item limit due to a [limitation] on [`Deserialize`]. /// /// # Example /// /// ``` /// use bevy_reflect::{PartialReflect, Array}; /// /// let foo: &dyn Array = &[123_u32, 456_u32, 789_u32]; /// assert_eq!(foo.len(), 3); /// /// let field: &dyn PartialReflect = foo.get(0).unwrap(); /// assert_eq!(field.try_downcast_ref::(), Some(&123)); /// ``` /// /// [array-like]: https://doc.rust-lang.org/book/ch03-02-data-types.html#the-array-type /// [reflection]: crate /// [`List`]: crate::List /// [type-erasing]: https://doc.rust-lang.org/book/ch17-02-trait-objects.html /// [`GetTypeRegistration`]: crate::GetTypeRegistration /// [limitation]: https://github.com/serde-rs/serde/issues/1937 /// [`Deserialize`]: ::serde::Deserialize pub trait Array: PartialReflect { /// Returns a reference to the element at `index`, or `None` if out of bounds. fn get(&self, index: usize) -> Option<&dyn PartialReflect>; /// Returns a mutable reference to the element at `index`, or `None` if out of bounds. fn get_mut(&mut self, index: usize) -> Option<&mut dyn PartialReflect>; /// Returns the number of elements in the array. fn len(&self) -> usize; /// Returns `true` if the collection contains no elements. fn is_empty(&self) -> bool { self.len() == 0 } /// Returns an iterator over the array. fn iter(&self) -> ArrayIter; /// Drain the elements of this array to get a vector of owned values. fn drain(self: Box) -> Vec>; /// Clones the list, producing a [`DynamicArray`]. fn clone_dynamic(&self) -> DynamicArray { DynamicArray { represented_type: self.get_represented_type_info(), values: self.iter().map(PartialReflect::clone_value).collect(), } } /// Will return `None` if [`TypeInfo`] is not available. fn get_represented_array_info(&self) -> Option<&'static ArrayInfo> { self.get_represented_type_info()?.as_array().ok() } } /// A container for compile-time array info. #[derive(Clone, Debug)] pub struct ArrayInfo { ty: Type, generics: Generics, item_info: fn() -> Option<&'static TypeInfo>, item_ty: Type, capacity: usize, #[cfg(feature = "documentation")] docs: Option<&'static str>, } impl ArrayInfo { /// Create a new [`ArrayInfo`]. /// /// # Arguments /// /// * `capacity`: The maximum capacity of the underlying array. pub fn new( capacity: usize, ) -> Self { Self { ty: Type::of::(), generics: Generics::new(), item_info: TItem::maybe_type_info, item_ty: Type::of::(), capacity, #[cfg(feature = "documentation")] docs: None, } } /// Sets the docstring for this array. #[cfg(feature = "documentation")] pub fn with_docs(self, docs: Option<&'static str>) -> Self { Self { docs, ..self } } /// The compile-time capacity of the array. pub fn capacity(&self) -> usize { self.capacity } impl_type_methods!(ty); /// The [`TypeInfo`] of the array item. /// /// Returns `None` if the array item does not contain static type information, /// such as for dynamic types. pub fn item_info(&self) -> Option<&'static TypeInfo> { (self.item_info)() } /// The [type] of the array item. /// /// [type]: Type pub fn item_ty(&self) -> Type { self.item_ty } /// The docstring of this array, if any. #[cfg(feature = "documentation")] pub fn docs(&self) -> Option<&'static str> { self.docs } impl_generic_info_methods!(generics); } /// A fixed-size list of reflected values. /// /// This differs from [`DynamicList`] in that the size of the [`DynamicArray`] /// is constant, whereas a [`DynamicList`] can have items added and removed. /// /// This isn't to say that a [`DynamicArray`] is immutable— its items /// can be mutated— just that the _number_ of items cannot change. /// /// [`DynamicList`]: crate::DynamicList #[derive(Debug)] pub struct DynamicArray { pub(crate) represented_type: Option<&'static TypeInfo>, pub(crate) values: Box<[Box]>, } impl DynamicArray { #[inline] pub fn new(values: Box<[Box]>) -> Self { Self { represented_type: None, values, } } #[deprecated(since = "0.15.0", note = "use from_iter")] pub fn from_vec(values: Vec) -> Self { Self::from_iter(values) } /// Sets the [type] to be represented by this `DynamicArray`. /// /// # Panics /// /// Panics if the given [type] is not a [`TypeInfo::Array`]. /// /// [type]: TypeInfo pub fn set_represented_type(&mut self, represented_type: Option<&'static TypeInfo>) { if let Some(represented_type) = represented_type { assert!( matches!(represented_type, TypeInfo::Array(_)), "expected TypeInfo::Array but received: {:?}", represented_type ); } self.represented_type = represented_type; } } impl PartialReflect for DynamicArray { #[inline] fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { self.represented_type } #[inline] fn into_partial_reflect(self: Box) -> Box { self } #[inline] fn as_partial_reflect(&self) -> &dyn PartialReflect { self } #[inline] fn as_partial_reflect_mut(&mut self) -> &mut dyn PartialReflect { self } fn try_into_reflect(self: Box) -> Result, Box> { Err(self) } fn try_as_reflect(&self) -> Option<&dyn Reflect> { None } fn try_as_reflect_mut(&mut self) -> Option<&mut dyn Reflect> { None } fn apply(&mut self, value: &dyn PartialReflect) { array_apply(self, value); } fn try_apply(&mut self, value: &dyn PartialReflect) -> Result<(), ApplyError> { array_try_apply(self, value) } #[inline] fn reflect_kind(&self) -> ReflectKind { ReflectKind::Array } #[inline] fn reflect_ref(&self) -> ReflectRef { ReflectRef::Array(self) } #[inline] fn reflect_mut(&mut self) -> ReflectMut { ReflectMut::Array(self) } #[inline] fn reflect_owned(self: Box) -> ReflectOwned { ReflectOwned::Array(self) } #[inline] fn clone_value(&self) -> Box { Box::new(self.clone_dynamic()) } #[inline] fn reflect_hash(&self) -> Option { array_hash(self) } fn reflect_partial_eq(&self, value: &dyn PartialReflect) -> Option { array_partial_eq(self, value) } fn debug(&self, f: &mut Formatter<'_>) -> core::fmt::Result { write!(f, "DynamicArray(")?; array_debug(self, f)?; write!(f, ")") } #[inline] fn is_dynamic(&self) -> bool { true } } impl Array for DynamicArray { #[inline] fn get(&self, index: usize) -> Option<&dyn PartialReflect> { self.values.get(index).map(|value| &**value) } #[inline] fn get_mut(&mut self, index: usize) -> Option<&mut dyn PartialReflect> { self.values.get_mut(index).map(|value| &mut **value) } #[inline] fn len(&self) -> usize { self.values.len() } #[inline] fn iter(&self) -> ArrayIter { ArrayIter::new(self) } #[inline] fn drain(self: Box) -> Vec> { self.values.into_vec() } #[inline] fn clone_dynamic(&self) -> DynamicArray { DynamicArray { represented_type: self.represented_type, values: self .values .iter() .map(|value| value.clone_value()) .collect(), } } } impl FromIterator> for DynamicArray { fn from_iter>>(values: I) -> Self { Self { represented_type: None, values: values.into_iter().collect::>().into_boxed_slice(), } } } impl FromIterator for DynamicArray { fn from_iter>(values: I) -> Self { values .into_iter() .map(|value| Box::new(value).into_partial_reflect()) .collect() } } impl IntoIterator for DynamicArray { type Item = Box; type IntoIter = alloc::vec::IntoIter; fn into_iter(self) -> Self::IntoIter { self.values.into_vec().into_iter() } } impl<'a> IntoIterator for &'a DynamicArray { type Item = &'a dyn PartialReflect; type IntoIter = ArrayIter<'a>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl_type_path!((in bevy_reflect) DynamicArray); /// An iterator over an [`Array`]. pub struct ArrayIter<'a> { array: &'a dyn Array, index: usize, } impl ArrayIter<'_> { /// Creates a new [`ArrayIter`]. #[inline] pub const fn new(array: &dyn Array) -> ArrayIter { ArrayIter { array, index: 0 } } } impl<'a> Iterator for ArrayIter<'a> { type Item = &'a dyn PartialReflect; #[inline] fn next(&mut self) -> Option { let value = self.array.get(self.index); self.index += value.is_some() as usize; value } #[inline] fn size_hint(&self) -> (usize, Option) { let size = self.array.len(); (size, Some(size)) } } impl<'a> ExactSizeIterator for ArrayIter<'a> {} /// Returns the `u64` hash of the given [array](Array). #[inline] pub fn array_hash(array: &A) -> Option { let mut hasher = reflect_hasher(); Any::type_id(array).hash(&mut hasher); array.len().hash(&mut hasher); for value in array.iter() { hasher.write_u64(value.reflect_hash()?); } Some(hasher.finish()) } /// Applies the reflected [array](Array) data to the given [array](Array). /// /// # Panics /// /// * Panics if the two arrays have differing lengths. /// * Panics if the reflected value is not a [valid array](ReflectRef::Array). #[inline] pub fn array_apply(array: &mut A, reflect: &dyn PartialReflect) { if let ReflectRef::Array(reflect_array) = reflect.reflect_ref() { if array.len() != reflect_array.len() { panic!("Attempted to apply different sized `Array` types."); } for (i, value) in reflect_array.iter().enumerate() { let v = array.get_mut(i).unwrap(); v.apply(value); } } else { panic!("Attempted to apply a non-`Array` type to an `Array` type."); } } /// Tries to apply the reflected [array](Array) data to the given [array](Array) and /// returns a Result. /// /// # Errors /// /// * Returns an [`ApplyError::DifferentSize`] if the two arrays have differing lengths. /// * Returns an [`ApplyError::MismatchedKinds`] if the reflected value is not a /// [valid array](ReflectRef::Array). /// * Returns any error that is generated while applying elements to each other. #[inline] pub fn array_try_apply( array: &mut A, reflect: &dyn PartialReflect, ) -> Result<(), ApplyError> { let reflect_array = reflect.reflect_ref().as_array()?; if array.len() != reflect_array.len() { return Err(ApplyError::DifferentSize { from_size: reflect_array.len(), to_size: array.len(), }); } for (i, value) in reflect_array.iter().enumerate() { let v = array.get_mut(i).unwrap(); v.try_apply(value)?; } Ok(()) } /// Compares two [arrays](Array) (one concrete and one reflected) to see if they /// are equal. /// /// Returns [`None`] if the comparison couldn't even be performed. #[inline] pub fn array_partial_eq( array: &A, reflect: &dyn PartialReflect, ) -> Option { match reflect.reflect_ref() { ReflectRef::Array(reflect_array) if reflect_array.len() == array.len() => { for (a, b) in array.iter().zip(reflect_array.iter()) { let eq_result = a.reflect_partial_eq(b); if let failed @ (Some(false) | None) = eq_result { return failed; } } } _ => return Some(false), } Some(true) } /// The default debug formatter for [`Array`] types. /// /// # Example /// ``` /// use bevy_reflect::Reflect; /// /// let my_array: &dyn Reflect = &[1, 2, 3]; /// println!("{:#?}", my_array); /// /// // Output: /// /// // [ /// // 1, /// // 2, /// // 3, /// // ] /// ``` #[inline] pub fn array_debug(dyn_array: &dyn Array, f: &mut Formatter<'_>) -> core::fmt::Result { let mut debug = f.debug_list(); for item in dyn_array.iter() { debug.entry(&item as &dyn Debug); } debug.finish() } #[cfg(test)] mod tests { use crate::Reflect; #[test] fn next_index_increment() { const SIZE: usize = if cfg!(debug_assertions) { 4 } else { // If compiled in release mode, verify we dont overflow usize::MAX }; let b = Box::new([(); SIZE]).into_reflect(); let array = b.reflect_ref().as_array().unwrap(); let mut iter = array.iter(); iter.index = SIZE - 1; assert!(iter.next().is_some()); // When None we should no longer increase index assert!(iter.next().is_none()); assert!(iter.index == SIZE); assert!(iter.next().is_none()); assert!(iter.index == SIZE); } }