#define_import_path bevy_pbr::shadows #import bevy_pbr::{ mesh_view_types::POINT_LIGHT_FLAGS_SPOT_LIGHT_Y_NEGATIVE, mesh_view_bindings as view_bindings, shadow_sampling::{SPOT_SHADOW_TEXEL_SIZE, sample_shadow_cubemap, sample_shadow_map} } #import bevy_render::{ color_operations::hsv_to_rgb, maths::PI_2 } const flip_z: vec3 = vec3(1.0, 1.0, -1.0); fn fetch_point_shadow(light_id: u32, frag_position: vec4, surface_normal: vec3) -> f32 { let light = &view_bindings::point_lights.data[light_id]; // because the shadow maps align with the axes and the frustum planes are at 45 degrees // we can get the worldspace depth by taking the largest absolute axis let surface_to_light = (*light).position_radius.xyz - frag_position.xyz; let surface_to_light_abs = abs(surface_to_light); let distance_to_light = max(surface_to_light_abs.x, max(surface_to_light_abs.y, surface_to_light_abs.z)); // The normal bias here is already scaled by the texel size at 1 world unit from the light. // The texel size increases proportionally with distance from the light so multiplying by // distance to light scales the normal bias to the texel size at the fragment distance. let normal_offset = (*light).shadow_normal_bias * distance_to_light * surface_normal.xyz; let depth_offset = (*light).shadow_depth_bias * normalize(surface_to_light.xyz); let offset_position = frag_position.xyz + normal_offset + depth_offset; // similar largest-absolute-axis trick as above, but now with the offset fragment position let frag_ls = offset_position.xyz - (*light).position_radius.xyz ; let abs_position_ls = abs(frag_ls); let major_axis_magnitude = max(abs_position_ls.x, max(abs_position_ls.y, abs_position_ls.z)); // NOTE: These simplifications come from multiplying: // projection * vec4(0, 0, -major_axis_magnitude, 1.0) // and keeping only the terms that have any impact on the depth. // Projection-agnostic approach: let zw = -major_axis_magnitude * (*light).light_custom_data.xy + (*light).light_custom_data.zw; let depth = zw.x / zw.y; // Do the lookup, using HW PCF and comparison. Cubemaps assume a left-handed coordinate space, // so we have to flip the z-axis when sampling. return sample_shadow_cubemap(frag_ls * flip_z, distance_to_light, depth, light_id); } fn fetch_spot_shadow(light_id: u32, frag_position: vec4, surface_normal: vec3) -> f32 { let light = &view_bindings::point_lights.data[light_id]; let surface_to_light = (*light).position_radius.xyz - frag_position.xyz; // construct the light view matrix var spot_dir = vec3((*light).light_custom_data.x, 0.0, (*light).light_custom_data.y); // reconstruct spot dir from x/z and y-direction flag spot_dir.y = sqrt(max(0.0, 1.0 - spot_dir.x * spot_dir.x - spot_dir.z * spot_dir.z)); if (((*light).flags & POINT_LIGHT_FLAGS_SPOT_LIGHT_Y_NEGATIVE) != 0u) { spot_dir.y = -spot_dir.y; } // view matrix z_axis is the reverse of transform.forward() let fwd = -spot_dir; let distance_to_light = dot(fwd, surface_to_light); let offset_position = -surface_to_light + ((*light).shadow_depth_bias * normalize(surface_to_light)) + (surface_normal.xyz * (*light).shadow_normal_bias) * distance_to_light; // the construction of the up and right vectors needs to precisely mirror the code // in render/light.rs:spot_light_view_matrix var sign = -1.0; if (fwd.z >= 0.0) { sign = 1.0; } let a = -1.0 / (fwd.z + sign); let b = fwd.x * fwd.y * a; let up_dir = vec3(1.0 + sign * fwd.x * fwd.x * a, sign * b, -sign * fwd.x); let right_dir = vec3(-b, -sign - fwd.y * fwd.y * a, fwd.y); let light_inv_rot = mat3x3(right_dir, up_dir, fwd); // because the matrix is a pure rotation matrix, the inverse is just the transpose, and to calculate // the product of the transpose with a vector we can just post-multiply instead of pre-multiplying. // this allows us to keep the matrix construction code identical between CPU and GPU. let projected_position = offset_position * light_inv_rot; // divide xy by perspective matrix "f" and by -projected.z (projected.z is -projection matrix's w) // to get ndc coordinates let f_div_minus_z = 1.0 / ((*light).spot_light_tan_angle * -projected_position.z); let shadow_xy_ndc = projected_position.xy * f_div_minus_z; // convert to uv coordinates let shadow_uv = shadow_xy_ndc * vec2(0.5, -0.5) + vec2(0.5, 0.5); // 0.1 must match POINT_LIGHT_NEAR_Z let depth = 0.1 / -projected_position.z; return sample_shadow_map( shadow_uv, depth, i32(light_id) + view_bindings::lights.spot_light_shadowmap_offset, SPOT_SHADOW_TEXEL_SIZE ); } fn get_cascade_index(light_id: u32, view_z: f32) -> u32 { let light = &view_bindings::lights.directional_lights[light_id]; for (var i: u32 = 0u; i < (*light).num_cascades; i = i + 1u) { if (-view_z < (*light).cascades[i].far_bound) { return i; } } return (*light).num_cascades; } // Converts from world space to the uv position in the light's shadow map. // // The depth is stored in the return value's z coordinate. If the return value's // w coordinate is 0.0, then we landed outside the shadow map entirely. fn world_to_directional_light_local( light_id: u32, cascade_index: u32, offset_position: vec4 ) -> vec4 { let light = &view_bindings::lights.directional_lights[light_id]; let cascade = &(*light).cascades[cascade_index]; let offset_position_clip = (*cascade).clip_from_world * offset_position; if (offset_position_clip.w <= 0.0) { return vec4(0.0); } let offset_position_ndc = offset_position_clip.xyz / offset_position_clip.w; // No shadow outside the orthographic projection volume if (any(offset_position_ndc.xy < vec2(-1.0)) || offset_position_ndc.z < 0.0 || any(offset_position_ndc > vec3(1.0))) { return vec4(0.0); } // compute texture coordinates for shadow lookup, compensating for the Y-flip difference // between the NDC and texture coordinates let flip_correction = vec2(0.5, -0.5); let light_local = offset_position_ndc.xy * flip_correction + vec2(0.5, 0.5); let depth = offset_position_ndc.z; return vec4(light_local, depth, 1.0); } fn sample_directional_cascade(light_id: u32, cascade_index: u32, frag_position: vec4, surface_normal: vec3) -> f32 { let light = &view_bindings::lights.directional_lights[light_id]; let cascade = &(*light).cascades[cascade_index]; // The normal bias is scaled to the texel size. let normal_offset = (*light).shadow_normal_bias * (*cascade).texel_size * surface_normal.xyz; let depth_offset = (*light).shadow_depth_bias * (*light).direction_to_light.xyz; let offset_position = vec4(frag_position.xyz + normal_offset + depth_offset, frag_position.w); let light_local = world_to_directional_light_local(light_id, cascade_index, offset_position); if (light_local.w == 0.0) { return 1.0; } let array_index = i32((*light).depth_texture_base_index + cascade_index); return sample_shadow_map(light_local.xy, light_local.z, array_index, (*cascade).texel_size); } fn fetch_directional_shadow(light_id: u32, frag_position: vec4, surface_normal: vec3, view_z: f32) -> f32 { let light = &view_bindings::lights.directional_lights[light_id]; let cascade_index = get_cascade_index(light_id, view_z); if (cascade_index >= (*light).num_cascades) { return 1.0; } var shadow = sample_directional_cascade(light_id, cascade_index, frag_position, surface_normal); // Blend with the next cascade, if there is one. let next_cascade_index = cascade_index + 1u; if (next_cascade_index < (*light).num_cascades) { let this_far_bound = (*light).cascades[cascade_index].far_bound; let next_near_bound = (1.0 - (*light).cascades_overlap_proportion) * this_far_bound; if (-view_z >= next_near_bound) { let next_shadow = sample_directional_cascade(light_id, next_cascade_index, frag_position, surface_normal); shadow = mix(shadow, next_shadow, (-view_z - next_near_bound) / (this_far_bound - next_near_bound)); } } return shadow; } fn cascade_debug_visualization( output_color: vec3, light_id: u32, view_z: f32, ) -> vec3 { let overlay_alpha = 0.95; let cascade_index = get_cascade_index(light_id, view_z); let cascade_color = hsv_to_rgb( f32(cascade_index) / f32(#{MAX_CASCADES_PER_LIGHT}u + 1u) * PI_2, 1.0, 0.5 ); return vec3( (1.0 - overlay_alpha) * output_color.rgb + overlay_alpha * cascade_color ); }