#define_import_path bevy_pbr::lighting #import bevy_pbr::utils PI #import bevy_pbr::mesh_view_types as view_types #import bevy_pbr::mesh_view_bindings as view_bindings // From the Filament design doc // https://google.github.io/filament/Filament.html#table_symbols // Symbol Definition // v View unit vector // l Incident light unit vector // n Surface normal unit vector // h Half unit vector between l and v // f BRDF // f_d Diffuse component of a BRDF // f_r Specular component of a BRDF // α Roughness, remapped from using input perceptualRoughness // σ Diffuse reflectance // Ω Spherical domain // f0 Reflectance at normal incidence // f90 Reflectance at grazing angle // χ+(a) Heaviside function (1 if a>0 and 0 otherwise) // nior Index of refraction (IOR) of an interface // ⟨n⋅l⟩ Dot product clamped to [0..1] // ⟨a⟩ Saturated value (clamped to [0..1]) // The Bidirectional Reflectance Distribution Function (BRDF) describes the surface response of a standard material // and consists of two components, the diffuse component (f_d) and the specular component (f_r): // f(v,l) = f_d(v,l) + f_r(v,l) // // The form of the microfacet model is the same for diffuse and specular // f_r(v,l) = f_d(v,l) = 1 / { |n⋅v||n⋅l| } ∫_Ω D(m,α) G(v,l,m) f_m(v,l,m) (v⋅m) (l⋅m) dm // // In which: // D, also called the Normal Distribution Function (NDF) models the distribution of the microfacets // G models the visibility (or occlusion or shadow-masking) of the microfacets // f_m is the microfacet BRDF and differs between specular and diffuse components // // The above integration needs to be approximated. // distanceAttenuation is simply the square falloff of light intensity // combined with a smooth attenuation at the edge of the light radius // // light radius is a non-physical construct for efficiency purposes, // because otherwise every light affects every fragment in the scene fn getDistanceAttenuation(distanceSquare: f32, inverseRangeSquared: f32) -> f32 { let factor = distanceSquare * inverseRangeSquared; let smoothFactor = saturate(1.0 - factor * factor); let attenuation = smoothFactor * smoothFactor; return attenuation * 1.0 / max(distanceSquare, 0.0001); } // Normal distribution function (specular D) // Based on https://google.github.io/filament/Filament.html#citation-walter07 // D_GGX(h,α) = α^2 / { π ((n⋅h)^2 (α2−1) + 1)^2 } // Simple implementation, has precision problems when using fp16 instead of fp32 // see https://google.github.io/filament/Filament.html#listing_speculardfp16 fn D_GGX(roughness: f32, NoH: f32, h: vec3) -> f32 { let oneMinusNoHSquared = 1.0 - NoH * NoH; let a = NoH * roughness; let k = roughness / (oneMinusNoHSquared + a * a); let d = k * k * (1.0 / PI); return d; } // Visibility function (Specular G) // V(v,l,a) = G(v,l,α) / { 4 (n⋅v) (n⋅l) } // such that f_r becomes // f_r(v,l) = D(h,α) V(v,l,α) F(v,h,f0) // where // V(v,l,α) = 0.5 / { n⋅l sqrt((n⋅v)^2 (1−α2) + α2) + n⋅v sqrt((n⋅l)^2 (1−α2) + α2) } // Note the two sqrt's, that may be slow on mobile, see https://google.github.io/filament/Filament.html#listing_approximatedspecularv fn V_SmithGGXCorrelated(roughness: f32, NoV: f32, NoL: f32) -> f32 { let a2 = roughness * roughness; let lambdaV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2); let lambdaL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2); let v = 0.5 / (lambdaV + lambdaL); return v; } // Fresnel function // see https://google.github.io/filament/Filament.html#citation-schlick94 // F_Schlick(v,h,f_0,f_90) = f_0 + (f_90 − f_0) (1 − v⋅h)^5 fn F_Schlick_vec(f0: vec3, f90: f32, VoH: f32) -> vec3 { // not using mix to keep the vec3 and float versions identical return f0 + (f90 - f0) * pow(1.0 - VoH, 5.0); } fn F_Schlick(f0: f32, f90: f32, VoH: f32) -> f32 { // not using mix to keep the vec3 and float versions identical return f0 + (f90 - f0) * pow(1.0 - VoH, 5.0); } fn fresnel(f0: vec3, LoH: f32) -> vec3 { // f_90 suitable for ambient occlusion // see https://google.github.io/filament/Filament.html#lighting/occlusion let f90 = saturate(dot(f0, vec3(50.0 * 0.33))); return F_Schlick_vec(f0, f90, LoH); } // Specular BRDF // https://google.github.io/filament/Filament.html#materialsystem/specularbrdf // Cook-Torrance approximation of the microfacet model integration using Fresnel law F to model f_m // f_r(v,l) = { D(h,α) G(v,l,α) F(v,h,f0) } / { 4 (n⋅v) (n⋅l) } fn specular( f0: vec3, roughness: f32, h: vec3, NoV: f32, NoL: f32, NoH: f32, LoH: f32, specularIntensity: f32, f_ab: vec2 ) -> vec3 { let D = D_GGX(roughness, NoH, h); let V = V_SmithGGXCorrelated(roughness, NoV, NoL); let F = fresnel(f0, LoH); var Fr = (specularIntensity * D * V) * F; // Multiscattering approximation: https://google.github.io/filament/Filament.html#listing_energycompensationimpl Fr *= 1.0 + f0 * (1.0 / f_ab.x - 1.0); return Fr; } // Diffuse BRDF // https://google.github.io/filament/Filament.html#materialsystem/diffusebrdf // fd(v,l) = σ/π * 1 / { |n⋅v||n⋅l| } ∫Ω D(m,α) G(v,l,m) (v⋅m) (l⋅m) dm // // simplest approximation // float Fd_Lambert() { // return 1.0 / PI; // } // // vec3 Fd = diffuseColor * Fd_Lambert(); // // Disney approximation // See https://google.github.io/filament/Filament.html#citation-burley12 // minimal quality difference fn Fd_Burley(roughness: f32, NoV: f32, NoL: f32, LoH: f32) -> f32 { let f90 = 0.5 + 2.0 * roughness * LoH * LoH; let lightScatter = F_Schlick(1.0, f90, NoL); let viewScatter = F_Schlick(1.0, f90, NoV); return lightScatter * viewScatter * (1.0 / PI); } // Scale/bias approximation // https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile // TODO: Use a LUT (more accurate) fn F_AB(perceptual_roughness: f32, NoV: f32) -> vec2 { let c0 = vec4(-1.0, -0.0275, -0.572, 0.022); let c1 = vec4(1.0, 0.0425, 1.04, -0.04); let r = perceptual_roughness * c0 + c1; let a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y; return vec2(-1.04, 1.04) * a004 + r.zw; } fn EnvBRDFApprox(f0: vec3, f_ab: vec2) -> vec3 { return f0 * f_ab.x + f_ab.y; } fn perceptualRoughnessToRoughness(perceptualRoughness: f32) -> f32 { // clamp perceptual roughness to prevent precision problems // According to Filament design 0.089 is recommended for mobile // Filament uses 0.045 for non-mobile let clampedPerceptualRoughness = clamp(perceptualRoughness, 0.089, 1.0); return clampedPerceptualRoughness * clampedPerceptualRoughness; } fn point_light( world_position: vec3, light_id: u32, roughness: f32, NdotV: f32, N: vec3, V: vec3, R: vec3, F0: vec3, f_ab: vec2, diffuseColor: vec3 ) -> vec3 { let light = &view_bindings::point_lights.data[light_id]; let light_to_frag = (*light).position_radius.xyz - world_position.xyz; let distance_square = dot(light_to_frag, light_to_frag); let rangeAttenuation = getDistanceAttenuation(distance_square, (*light).color_inverse_square_range.w); // Specular. // Representative Point Area Lights. // see http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf p14-16 let a = roughness; let centerToRay = dot(light_to_frag, R) * R - light_to_frag; let closestPoint = light_to_frag + centerToRay * saturate((*light).position_radius.w * inverseSqrt(dot(centerToRay, centerToRay))); let LspecLengthInverse = inverseSqrt(dot(closestPoint, closestPoint)); let normalizationFactor = a / saturate(a + ((*light).position_radius.w * 0.5 * LspecLengthInverse)); let specularIntensity = normalizationFactor * normalizationFactor; var L: vec3 = closestPoint * LspecLengthInverse; // normalize() equivalent? var H: vec3 = normalize(L + V); var NoL: f32 = saturate(dot(N, L)); var NoH: f32 = saturate(dot(N, H)); var LoH: f32 = saturate(dot(L, H)); let specular_light = specular(F0, roughness, H, NdotV, NoL, NoH, LoH, specularIntensity, f_ab); // Diffuse. // Comes after specular since its NoL is used in the lighting equation. L = normalize(light_to_frag); H = normalize(L + V); NoL = saturate(dot(N, L)); NoH = saturate(dot(N, H)); LoH = saturate(dot(L, H)); let diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH); // See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminanceEquation // Lout = f(v,l) Φ / { 4 π d^2 }⟨n⋅l⟩ // where // f(v,l) = (f_d(v,l) + f_r(v,l)) * light_color // Φ is luminous power in lumens // our rangeAttenuation = 1 / d^2 multiplied with an attenuation factor for smoothing at the edge of the non-physical maximum light radius // For a point light, luminous intensity, I, in lumens per steradian is given by: // I = Φ / 4 π // The derivation of this can be seen here: https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminousPower // NOTE: (*light).color.rgb is premultiplied with (*light).intensity / 4 π (which would be the luminous intensity) on the CPU return ((diffuse + specular_light) * (*light).color_inverse_square_range.rgb) * (rangeAttenuation * NoL); } fn spot_light( world_position: vec3, light_id: u32, roughness: f32, NdotV: f32, N: vec3, V: vec3, R: vec3, F0: vec3, f_ab: vec2, diffuseColor: vec3 ) -> vec3 { // reuse the point light calculations let point_light = point_light(world_position, light_id, roughness, NdotV, N, V, R, F0, f_ab, diffuseColor); let light = &view_bindings::point_lights.data[light_id]; // reconstruct spot dir from x/z and y-direction flag var spot_dir = vec3((*light).light_custom_data.x, 0.0, (*light).light_custom_data.y); spot_dir.y = sqrt(max(0.0, 1.0 - spot_dir.x * spot_dir.x - spot_dir.z * spot_dir.z)); if ((*light).flags & view_types::POINT_LIGHT_FLAGS_SPOT_LIGHT_Y_NEGATIVE) != 0u { spot_dir.y = -spot_dir.y; } let light_to_frag = (*light).position_radius.xyz - world_position.xyz; // calculate attenuation based on filament formula https://google.github.io/filament/Filament.html#listing_glslpunctuallight // spot_scale and spot_offset have been precomputed // note we normalize here to get "l" from the filament listing. spot_dir is already normalized let cd = dot(-spot_dir, normalize(light_to_frag)); let attenuation = saturate(cd * (*light).light_custom_data.z + (*light).light_custom_data.w); let spot_attenuation = attenuation * attenuation; return point_light * spot_attenuation; } fn directional_light(light_id: u32, roughness: f32, NdotV: f32, normal: vec3, view: vec3, R: vec3, F0: vec3, f_ab: vec2, diffuseColor: vec3) -> vec3 { let light = &view_bindings::lights.directional_lights[light_id]; let incident_light = (*light).direction_to_light.xyz; let half_vector = normalize(incident_light + view); let NoL = saturate(dot(normal, incident_light)); let NoH = saturate(dot(normal, half_vector)); let LoH = saturate(dot(incident_light, half_vector)); let diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH); let specularIntensity = 1.0; let specular_light = specular(F0, roughness, half_vector, NdotV, NoL, NoH, LoH, specularIntensity, f_ab); return (specular_light + diffuse) * (*light).color.rgb * NoL; }