use crate::func::macros::impl_function_traits; use crate::{ self as bevy_reflect, utility::reflect_hasher, ApplyError, Reflect, ReflectKind, ReflectMut, ReflectOwned, ReflectRef, TypeInfo, TypePath, TypePathTable, }; use bevy_reflect_derive::impl_type_path; use std::{ any::{Any, TypeId}, fmt::{Debug, Formatter}, hash::{Hash, Hasher}, }; /// A trait used to power [array-like] operations via [reflection]. /// /// This corresponds to true Rust arrays like `[T; N]`, /// but also to any fixed-size linear sequence types. /// It is expected that implementors of this trait uphold this contract /// and maintain a fixed size as returned by the [`Array::len`] method. /// /// Due to the [type-erasing] nature of the reflection API as a whole, /// this trait does not make any guarantees that the implementor's elements /// are homogeneous (i.e. all the same type). /// /// This trait has a blanket implementation over Rust arrays of up to 32 items. /// This implementation can technically contain more than 32, /// but the blanket [`GetTypeRegistration`] is only implemented up to the 32 /// item limit due to a [limitation] on [`Deserialize`]. /// /// # Example /// /// ``` /// use bevy_reflect::{Reflect, Array}; /// /// let foo: &dyn Array = &[123_u32, 456_u32, 789_u32]; /// assert_eq!(foo.len(), 3); /// /// let field: &dyn Reflect = foo.get(0).unwrap(); /// assert_eq!(field.downcast_ref::(), Some(&123)); /// ``` /// /// [array-like]: https://doc.rust-lang.org/book/ch03-02-data-types.html#the-array-type /// [reflection]: crate /// [`List`]: crate::List /// [type-erasing]: https://doc.rust-lang.org/book/ch17-02-trait-objects.html /// [`GetTypeRegistration`]: crate::GetTypeRegistration /// [limitation]: https://github.com/serde-rs/serde/issues/1937 /// [`Deserialize`]: ::serde::Deserialize pub trait Array: Reflect { /// Returns a reference to the element at `index`, or `None` if out of bounds. fn get(&self, index: usize) -> Option<&dyn Reflect>; /// Returns a mutable reference to the element at `index`, or `None` if out of bounds. fn get_mut(&mut self, index: usize) -> Option<&mut dyn Reflect>; /// Returns the number of elements in the array. fn len(&self) -> usize; /// Returns `true` if the collection contains no elements. fn is_empty(&self) -> bool { self.len() == 0 } /// Returns an iterator over the array. fn iter(&self) -> ArrayIter; /// Drain the elements of this array to get a vector of owned values. fn drain(self: Box) -> Vec>; /// Clones the list, producing a [`DynamicArray`]. fn clone_dynamic(&self) -> DynamicArray { DynamicArray { represented_type: self.get_represented_type_info(), values: self.iter().map(|value| value.clone_value()).collect(), } } } /// A container for compile-time array info. #[derive(Clone, Debug)] pub struct ArrayInfo { type_path: TypePathTable, type_id: TypeId, item_type_path: TypePathTable, item_type_id: TypeId, capacity: usize, #[cfg(feature = "documentation")] docs: Option<&'static str>, } impl ArrayInfo { /// Create a new [`ArrayInfo`]. /// /// # Arguments /// /// * `capacity`: The maximum capacity of the underlying array. /// pub fn new(capacity: usize) -> Self { Self { type_path: TypePathTable::of::(), type_id: TypeId::of::(), item_type_path: TypePathTable::of::(), item_type_id: TypeId::of::(), capacity, #[cfg(feature = "documentation")] docs: None, } } /// Sets the docstring for this array. #[cfg(feature = "documentation")] pub fn with_docs(self, docs: Option<&'static str>) -> Self { Self { docs, ..self } } /// The compile-time capacity of the array. pub fn capacity(&self) -> usize { self.capacity } /// A representation of the type path of the array. /// /// Provides dynamic access to all methods on [`TypePath`]. pub fn type_path_table(&self) -> &TypePathTable { &self.type_path } /// The [stable, full type path] of the array. /// /// Use [`type_path_table`] if you need access to the other methods on [`TypePath`]. /// /// [stable, full type path]: TypePath /// [`type_path_table`]: Self::type_path_table pub fn type_path(&self) -> &'static str { self.type_path_table().path() } /// The [`TypeId`] of the array. pub fn type_id(&self) -> TypeId { self.type_id } /// Check if the given type matches the array type. pub fn is(&self) -> bool { TypeId::of::() == self.type_id } /// A representation of the type path of the array item. /// /// Provides dynamic access to all methods on [`TypePath`]. pub fn item_type_path_table(&self) -> &TypePathTable { &self.item_type_path } /// The [`TypeId`] of the array item. pub fn item_type_id(&self) -> TypeId { self.item_type_id } /// Check if the given type matches the array item type. pub fn item_is(&self) -> bool { TypeId::of::() == self.item_type_id } /// The docstring of this array, if any. #[cfg(feature = "documentation")] pub fn docs(&self) -> Option<&'static str> { self.docs } } /// A fixed-size list of reflected values. /// /// This differs from [`DynamicList`] in that the size of the [`DynamicArray`] /// is constant, whereas a [`DynamicList`] can have items added and removed. /// /// This isn't to say that a [`DynamicArray`] is immutable— its items /// can be mutated— just that the _number_ of items cannot change. /// /// [`DynamicList`]: crate::DynamicList #[derive(Debug)] pub struct DynamicArray { pub(crate) represented_type: Option<&'static TypeInfo>, pub(crate) values: Box<[Box]>, } impl DynamicArray { #[inline] pub fn new(values: Box<[Box]>) -> Self { Self { represented_type: None, values, } } pub fn from_vec(values: Vec) -> Self { Self { represented_type: None, values: values .into_iter() .map(|field| Box::new(field) as Box) .collect::>() .into_boxed_slice(), } } /// Sets the [type] to be represented by this `DynamicArray`. /// /// # Panics /// /// Panics if the given [type] is not a [`TypeInfo::Array`]. /// /// [type]: TypeInfo pub fn set_represented_type(&mut self, represented_type: Option<&'static TypeInfo>) { if let Some(represented_type) = represented_type { assert!( matches!(represented_type, TypeInfo::Array(_)), "expected TypeInfo::Array but received: {:?}", represented_type ); } self.represented_type = represented_type; } } impl Reflect for DynamicArray { #[inline] fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { self.represented_type } #[inline] fn into_any(self: Box) -> Box { self } #[inline] fn as_any(&self) -> &dyn Any { self } #[inline] fn as_any_mut(&mut self) -> &mut dyn Any { self } #[inline] fn into_reflect(self: Box) -> Box { self } #[inline] fn as_reflect(&self) -> &dyn Reflect { self } #[inline] fn as_reflect_mut(&mut self) -> &mut dyn Reflect { self } fn apply(&mut self, value: &dyn Reflect) { array_apply(self, value); } fn try_apply(&mut self, value: &dyn Reflect) -> Result<(), ApplyError> { array_try_apply(self, value) } #[inline] fn set(&mut self, value: Box) -> Result<(), Box> { *self = value.take()?; Ok(()) } #[inline] fn reflect_kind(&self) -> ReflectKind { ReflectKind::Array } #[inline] fn reflect_ref(&self) -> ReflectRef { ReflectRef::Array(self) } #[inline] fn reflect_mut(&mut self) -> ReflectMut { ReflectMut::Array(self) } #[inline] fn reflect_owned(self: Box) -> ReflectOwned { ReflectOwned::Array(self) } #[inline] fn clone_value(&self) -> Box { Box::new(self.clone_dynamic()) } #[inline] fn reflect_hash(&self) -> Option { array_hash(self) } fn reflect_partial_eq(&self, value: &dyn Reflect) -> Option { array_partial_eq(self, value) } fn debug(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "DynamicArray(")?; array_debug(self, f)?; write!(f, ")") } #[inline] fn is_dynamic(&self) -> bool { true } } impl Array for DynamicArray { #[inline] fn get(&self, index: usize) -> Option<&dyn Reflect> { self.values.get(index).map(|value| &**value) } #[inline] fn get_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> { self.values.get_mut(index).map(|value| &mut **value) } #[inline] fn len(&self) -> usize { self.values.len() } #[inline] fn iter(&self) -> ArrayIter { ArrayIter::new(self) } #[inline] fn drain(self: Box) -> Vec> { self.values.into_vec() } #[inline] fn clone_dynamic(&self) -> DynamicArray { DynamicArray { represented_type: self.represented_type, values: self .values .iter() .map(|value| value.clone_value()) .collect(), } } } impl_type_path!((in bevy_reflect) DynamicArray); impl_function_traits!(DynamicArray); /// An iterator over an [`Array`]. pub struct ArrayIter<'a> { array: &'a dyn Array, index: usize, } impl<'a> ArrayIter<'a> { /// Creates a new [`ArrayIter`]. #[inline] pub const fn new(array: &'a dyn Array) -> ArrayIter { ArrayIter { array, index: 0 } } } impl<'a> Iterator for ArrayIter<'a> { type Item = &'a dyn Reflect; #[inline] fn next(&mut self) -> Option { let value = self.array.get(self.index); self.index += value.is_some() as usize; value } #[inline] fn size_hint(&self) -> (usize, Option) { let size = self.array.len(); (size, Some(size)) } } impl<'a> ExactSizeIterator for ArrayIter<'a> {} /// Returns the `u64` hash of the given [array](Array). #[inline] pub fn array_hash(array: &A) -> Option { let mut hasher = reflect_hasher(); Any::type_id(array).hash(&mut hasher); array.len().hash(&mut hasher); for value in array.iter() { hasher.write_u64(value.reflect_hash()?); } Some(hasher.finish()) } /// Applies the reflected [array](Array) data to the given [array](Array). /// /// # Panics /// /// * Panics if the two arrays have differing lengths. /// * Panics if the reflected value is not a [valid array](ReflectRef::Array). /// #[inline] pub fn array_apply(array: &mut A, reflect: &dyn Reflect) { if let ReflectRef::Array(reflect_array) = reflect.reflect_ref() { if array.len() != reflect_array.len() { panic!("Attempted to apply different sized `Array` types."); } for (i, value) in reflect_array.iter().enumerate() { let v = array.get_mut(i).unwrap(); v.apply(value); } } else { panic!("Attempted to apply a non-`Array` type to an `Array` type."); } } /// Tries to apply the reflected [array](Array) data to the given [array](Array) and /// returns a Result. /// /// # Errors /// /// * Returns an [`ApplyError::DifferentSize`] if the two arrays have differing lengths. /// * Returns an [`ApplyError::MismatchedKinds`] if the reflected value is not a /// [valid array](ReflectRef::Array). /// * Returns any error that is generated while applying elements to each other. /// #[inline] pub fn array_try_apply(array: &mut A, reflect: &dyn Reflect) -> Result<(), ApplyError> { if let ReflectRef::Array(reflect_array) = reflect.reflect_ref() { if array.len() != reflect_array.len() { return Err(ApplyError::DifferentSize { from_size: reflect_array.len(), to_size: array.len(), }); } for (i, value) in reflect_array.iter().enumerate() { let v = array.get_mut(i).unwrap(); v.try_apply(value)?; } } else { return Err(ApplyError::MismatchedKinds { from_kind: reflect.reflect_kind(), to_kind: ReflectKind::Array, }); } Ok(()) } /// Compares two [arrays](Array) (one concrete and one reflected) to see if they /// are equal. /// /// Returns [`None`] if the comparison couldn't even be performed. #[inline] pub fn array_partial_eq(array: &A, reflect: &dyn Reflect) -> Option { match reflect.reflect_ref() { ReflectRef::Array(reflect_array) if reflect_array.len() == array.len() => { for (a, b) in array.iter().zip(reflect_array.iter()) { let eq_result = a.reflect_partial_eq(b); if let failed @ (Some(false) | None) = eq_result { return failed; } } } _ => return Some(false), } Some(true) } /// The default debug formatter for [`Array`] types. /// /// # Example /// ``` /// use bevy_reflect::Reflect; /// /// let my_array: &dyn Reflect = &[1, 2, 3]; /// println!("{:#?}", my_array); /// /// // Output: /// /// // [ /// // 1, /// // 2, /// // 3, /// // ] /// ``` #[inline] pub fn array_debug(dyn_array: &dyn Array, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { let mut debug = f.debug_list(); for item in dyn_array.iter() { debug.entry(&item as &dyn Debug); } debug.finish() } #[cfg(test)] mod tests { use crate::{Reflect, ReflectRef}; #[test] fn next_index_increment() { const SIZE: usize = if cfg!(debug_assertions) { 4 } else { // If compiled in release mode, verify we dont overflow usize::MAX }; let b = Box::new([(); SIZE]).into_reflect(); let ReflectRef::Array(array) = b.reflect_ref() else { panic!("Not an array..."); }; let mut iter = array.iter(); iter.index = SIZE - 1; assert!(iter.next().is_some()); // When None we should no longer increase index assert!(iter.next().is_none()); assert!(iter.index == SIZE); assert!(iter.next().is_none()); assert!(iter.index == SIZE); } }