//! Definitions for [`Component`] reflection. //! //! This module exports two types: [`ReflectComponentFns`] and [`ReflectComponent`]. //! //! # Architecture //! //! [`ReflectComponent`] wraps a [`ReflectComponentFns`]. In fact, each method on //! [`ReflectComponent`] wraps a call to a function pointer field in `ReflectComponentFns`. //! //! ## Who creates `ReflectComponent`s? //! //! When a user adds the `#[reflect(Component)]` attribute to their `#[derive(Reflect)]` //! type, it tells the derive macro for `Reflect` to add the following single line to its //! [`get_type_registration`] method (see the relevant code[^1]). //! //! ``` //! # use bevy_reflect::{FromType, Reflect}; //! # use bevy_ecs::prelude::{ReflectComponent, Component}; //! # #[derive(Default, Reflect, Component)] //! # struct A; //! # impl A { //! # fn foo() { //! # let mut registration = bevy_reflect::TypeRegistration::of::(); //! registration.insert::(FromType::::from_type()); //! # } //! # } //! ``` //! //! This line adds a `ReflectComponent` to the registration data for the type in question. //! The user can access the `ReflectComponent` for type `T` through the type registry, //! as per the `trait_reflection.rs` example. //! //! The `FromType::::from_type()` in the previous line calls the `FromType` //! implementation of `ReflectComponent`. //! //! The `FromType` impl creates a function per field of [`ReflectComponentFns`]. //! In those functions, we call generic methods on [`World`] and [`EntityWorldMut`]. //! //! The result is a `ReflectComponent` completely independent of `C`, yet capable //! of using generic ECS methods such as `entity.get::()` to get `&dyn Reflect` //! with underlying type `C`, without the `C` appearing in the type signature. //! //! ## A note on code generation //! //! A downside of this approach is that monomorphized code (ie: concrete code //! for generics) is generated **unconditionally**, regardless of whether it ends //! up used or not. //! //! Adding `N` fields on `ReflectComponentFns` will generate `N × M` additional //! functions, where `M` is how many types derive `#[reflect(Component)]`. //! //! Those functions will increase the size of the final app binary. //! //! [^1]: `crates/bevy_reflect/bevy_reflect_derive/src/registration.rs` //! //! [`get_type_registration`]: bevy_reflect::GetTypeRegistration::get_type_registration use crate::{ change_detection::Mut, component::Component, entity::Entity, world::{unsafe_world_cell::UnsafeEntityCell, EntityRef, EntityWorldMut, FromWorld, World}, }; use bevy_reflect::{FromType, Reflect}; /// A struct used to operate on reflected [`Component`] of a type. /// /// A [`ReflectComponent`] for type `T` can be obtained via /// [`bevy_reflect::TypeRegistration::data`]. #[derive(Clone)] pub struct ReflectComponent(ReflectComponentFns); /// The raw function pointers needed to make up a [`ReflectComponent`]. /// /// This is used when creating custom implementations of [`ReflectComponent`] with /// [`ReflectComponent::new()`]. /// /// > **Note:** /// > Creating custom implementations of [`ReflectComponent`] is an advanced feature that most users /// > will not need. /// > Usually a [`ReflectComponent`] is created for a type by deriving [`Reflect`] /// > and adding the `#[reflect(Component)]` attribute. /// > After adding the component to the [`TypeRegistry`][bevy_reflect::TypeRegistry], /// > its [`ReflectComponent`] can then be retrieved when needed. /// /// Creating a custom [`ReflectComponent`] may be useful if you need to create new component types /// at runtime, for example, for scripting implementations. /// /// By creating a custom [`ReflectComponent`] and inserting it into a type's /// [`TypeRegistration`][bevy_reflect::TypeRegistration], /// you can modify the way that reflected components of that type will be inserted into the Bevy /// world. #[derive(Clone)] pub struct ReflectComponentFns { /// Function pointer implementing [`ReflectComponent::from_world()`]. pub from_world: fn(&mut World) -> Box, /// Function pointer implementing [`ReflectComponent::insert()`]. pub insert: fn(&mut EntityWorldMut, &dyn Reflect), /// Function pointer implementing [`ReflectComponent::apply()`]. pub apply: fn(&mut EntityWorldMut, &dyn Reflect), /// Function pointer implementing [`ReflectComponent::apply_or_insert()`]. pub apply_or_insert: fn(&mut EntityWorldMut, &dyn Reflect), /// Function pointer implementing [`ReflectComponent::remove()`]. pub remove: fn(&mut EntityWorldMut), /// Function pointer implementing [`ReflectComponent::contains()`]. pub contains: fn(EntityRef) -> bool, /// Function pointer implementing [`ReflectComponent::reflect()`]. pub reflect: fn(EntityRef) -> Option<&dyn Reflect>, /// Function pointer implementing [`ReflectComponent::reflect_mut()`]. pub reflect_mut: for<'a> fn(&'a mut EntityWorldMut<'_>) -> Option>, /// Function pointer implementing [`ReflectComponent::reflect_unchecked_mut()`]. /// /// # Safety /// The function may only be called with an [`UnsafeEntityCell`] that can be used to mutably access the relevant component on the given entity. pub reflect_unchecked_mut: unsafe fn(UnsafeEntityCell<'_>) -> Option>, /// Function pointer implementing [`ReflectComponent::copy()`]. pub copy: fn(&World, &mut World, Entity, Entity), } impl ReflectComponentFns { /// Get the default set of [`ReflectComponentFns`] for a specific component type using its /// [`FromType`] implementation. /// /// This is useful if you want to start with the default implementation before overriding some /// of the functions to create a custom implementation. pub fn new() -> Self { >::from_type().0 } } impl ReflectComponent { /// Constructs default reflected [`Component`] from world using [`from_world()`](FromWorld::from_world). pub fn from_world(&self, world: &mut World) -> Box { (self.0.from_world)(world) } /// Insert a reflected [`Component`] into the entity like [`insert()`](EntityWorldMut::insert). pub fn insert(&self, entity: &mut EntityWorldMut, component: &dyn Reflect) { (self.0.insert)(entity, component); } /// Uses reflection to set the value of this [`Component`] type in the entity to the given value. /// /// # Panics /// /// Panics if there is no [`Component`] of the given type. pub fn apply(&self, entity: &mut EntityWorldMut, component: &dyn Reflect) { (self.0.apply)(entity, component); } /// Uses reflection to set the value of this [`Component`] type in the entity to the given value or insert a new one if it does not exist. pub fn apply_or_insert(&self, entity: &mut EntityWorldMut, component: &dyn Reflect) { (self.0.apply_or_insert)(entity, component); } /// Removes this [`Component`] type from the entity. Does nothing if it doesn't exist. pub fn remove(&self, entity: &mut EntityWorldMut) { (self.0.remove)(entity); } /// Returns whether entity contains this [`Component`] pub fn contains(&self, entity: EntityRef) -> bool { (self.0.contains)(entity) } /// Gets the value of this [`Component`] type from the entity as a reflected reference. pub fn reflect<'a>(&self, entity: EntityRef<'a>) -> Option<&'a dyn Reflect> { (self.0.reflect)(entity) } /// Gets the value of this [`Component`] type from the entity as a mutable reflected reference. pub fn reflect_mut<'a>( &self, entity: &'a mut EntityWorldMut<'_>, ) -> Option> { (self.0.reflect_mut)(entity) } /// # Safety /// This method does not prevent you from having two mutable pointers to the same data, /// violating Rust's aliasing rules. To avoid this: /// * Only call this method with a [`UnsafeEntityCell`] that may be used to mutably access the component on the entity `entity` /// * Don't call this method more than once in the same scope for a given [`Component`]. pub unsafe fn reflect_unchecked_mut<'a>( &self, entity: UnsafeEntityCell<'a>, ) -> Option> { // SAFETY: safety requirements deferred to caller (self.0.reflect_unchecked_mut)(entity) } /// Gets the value of this [`Component`] type from entity from `source_world` and [applies](Self::apply()) it to the value of this [`Component`] type in entity in `destination_world`. /// /// # Panics /// /// Panics if there is no [`Component`] of the given type or either entity does not exist. pub fn copy( &self, source_world: &World, destination_world: &mut World, source_entity: Entity, destination_entity: Entity, ) { (self.0.copy)( source_world, destination_world, source_entity, destination_entity, ); } /// Create a custom implementation of [`ReflectComponent`]. /// /// This is an advanced feature, /// useful for scripting implementations, /// that should not be used by most users /// unless you know what you are doing. /// /// Usually you should derive [`Reflect`] and add the `#[reflect(Component)]` component /// to generate a [`ReflectComponent`] implementation automatically. /// /// See [`ReflectComponentFns`] for more information. pub fn new(fns: ReflectComponentFns) -> Self { Self(fns) } /// The underlying function pointers implementing methods on `ReflectComponent`. /// /// This is useful when you want to keep track locally of an individual /// function pointer. /// /// Calling [`TypeRegistry::get`] followed by /// [`TypeRegistration::data::`] can be costly if done several /// times per frame. Consider cloning [`ReflectComponent`] and keeping it /// between frames, cloning a `ReflectComponent` is very cheap. /// /// If you only need a subset of the methods on `ReflectComponent`, /// use `fn_pointers` to get the underlying [`ReflectComponentFns`] /// and copy the subset of function pointers you care about. /// /// [`TypeRegistration::data::`]: bevy_reflect::TypeRegistration::data /// [`TypeRegistry::get`]: bevy_reflect::TypeRegistry::get pub fn fn_pointers(&self) -> &ReflectComponentFns { &self.0 } } impl FromType for ReflectComponent { fn from_type() -> Self { ReflectComponent(ReflectComponentFns { from_world: |world| Box::new(C::from_world(world)), insert: |entity, reflected_component| { let mut component = entity.world_scope(|world| C::from_world(world)); component.apply(reflected_component); entity.insert(component); }, apply: |entity, reflected_component| { let mut component = entity.get_mut::().unwrap(); component.apply(reflected_component); }, apply_or_insert: |entity, reflected_component| { if let Some(mut component) = entity.get_mut::() { component.apply(reflected_component); } else { let mut component = entity.world_scope(|world| C::from_world(world)); component.apply(reflected_component); entity.insert(component); } }, remove: |entity| { entity.remove::(); }, contains: |entity| entity.contains::(), copy: |source_world, destination_world, source_entity, destination_entity| { let source_component = source_world.get::(source_entity).unwrap(); let mut destination_component = C::from_world(destination_world); destination_component.apply(source_component); destination_world .entity_mut(destination_entity) .insert(destination_component); }, reflect: |entity| entity.get::().map(|c| c as &dyn Reflect), reflect_mut: |entity| { entity.get_mut::().map(|c| Mut { value: c.value as &mut dyn Reflect, ticks: c.ticks, }) }, reflect_unchecked_mut: |entity| { // SAFETY: reflect_unchecked_mut is an unsafe function pointer used by // `reflect_unchecked_mut` which must be called with an UnsafeEntityCell with access to the component `C` on the `entity` unsafe { entity.get_mut::().map(|c| Mut { value: c.value as &mut dyn Reflect, ticks: c.ticks, }) } }, }) } }