#import bevy_render::{view::View, maths::affine3_to_square} @group(0) @binding(0) var view: View; struct LineGizmoUniform { world_from_local: mat3x4, line_width: f32, depth_bias: f32, resolution: u32, #ifdef SIXTEEN_BYTE_ALIGNMENT // WebGL2 structs must be 16 byte aligned. _padding: f32, #endif } @group(1) @binding(0) var joints_gizmo: LineGizmoUniform; struct VertexInput { @location(0) position_a: vec3, @location(1) position_b: vec3, @location(2) position_c: vec3, @location(3) color: vec4, @builtin(vertex_index) index: u32, }; struct VertexOutput { @builtin(position) clip_position: vec4, @location(0) color: vec4, }; const EPSILON: f32 = 4.88e-04; @vertex fn vertex_bevel(vertex: VertexInput) -> VertexOutput { var positions = array, 3>( vec2(0, 0), vec2(0, 0.5), vec2(0.5, 0), ); var position = positions[vertex.index]; let world_from_local = affine3_to_square(joints_gizmo.world_from_local); var clip_a = view.clip_from_world * world_from_local * vec4(vertex.position_a, 1.); var clip_b = view.clip_from_world * world_from_local * vec4(vertex.position_b, 1.); var clip_c = view.clip_from_world * world_from_local * vec4(vertex.position_c, 1.); // Manual near plane clipping to avoid errors when doing the perspective divide inside this shader. clip_a = clip_near_plane(clip_a, clip_c); clip_b = clip_near_plane(clip_b, clip_a); clip_c = clip_near_plane(clip_c, clip_b); clip_a = clip_near_plane(clip_a, clip_c); let resolution = view.viewport.zw; let screen_a = resolution * (0.5 * clip_a.xy / clip_a.w + 0.5); let screen_b = resolution * (0.5 * clip_b.xy / clip_b.w + 0.5); let screen_c = resolution * (0.5 * clip_c.xy / clip_c.w + 0.5); var color = vertex.color; var line_width = joints_gizmo.line_width; #ifdef PERSPECTIVE line_width /= clip_b.w; #endif // Line thinness fade from https://acegikmo.com/shapes/docs/#anti-aliasing if line_width > 0.0 && line_width < 1. { color.a *= line_width; line_width = 1.; } let ab = normalize(screen_b - screen_a); let cb = normalize(screen_b - screen_c); let ab_norm = vec2(-ab.y, ab.x); let cb_norm = vec2(cb.y, -cb.x); let tangent = normalize(ab - cb); let normal = vec2(-tangent.y, tangent.x); let sigma = sign(dot(ab + cb, normal)); var p0 = line_width * sigma * ab_norm; var p1 = line_width * sigma * cb_norm; let screen = screen_b + position.x * p0 + position.y * p1; let depth = depth(clip_b); var clip_position = vec4(clip_b.w * ((2. * screen) / resolution - 1.), depth, clip_b.w); return VertexOutput(clip_position, color); } @vertex fn vertex_miter(vertex: VertexInput) -> VertexOutput { var positions = array, 6>( vec3(0, 0, 0), vec3(0.5, 0, 0), vec3(0, 0.5, 0), vec3(0, 0, 0), vec3(0, 0.5, 0), vec3(0, 0, 0.5), ); var position = positions[vertex.index]; let world_from_local = affine3_to_square(joints_gizmo.world_from_local); var clip_a = view.clip_from_world * world_from_local * vec4(vertex.position_a, 1.); var clip_b = view.clip_from_world * world_from_local * vec4(vertex.position_b, 1.); var clip_c = view.clip_from_world * world_from_local * vec4(vertex.position_c, 1.); // Manual near plane clipping to avoid errors when doing the perspective divide inside this shader. clip_a = clip_near_plane(clip_a, clip_c); clip_b = clip_near_plane(clip_b, clip_a); clip_c = clip_near_plane(clip_c, clip_b); clip_a = clip_near_plane(clip_a, clip_c); let resolution = view.viewport.zw; let screen_a = resolution * (0.5 * clip_a.xy / clip_a.w + 0.5); let screen_b = resolution * (0.5 * clip_b.xy / clip_b.w + 0.5); let screen_c = resolution * (0.5 * clip_c.xy / clip_c.w + 0.5); var color = vertex.color; var line_width = joints_gizmo.line_width; #ifdef PERSPECTIVE line_width /= clip_b.w; #endif // Line thinness fade from https://acegikmo.com/shapes/docs/#anti-aliasing if line_width > 0.0 && line_width < 1. { color.a *= line_width; line_width = 1.; } let ab = normalize(screen_b - screen_a); let cb = normalize(screen_b - screen_c); let ab_norm = vec2(-ab.y, ab.x); let cb_norm = vec2(cb.y, -cb.x); let tangent = normalize(ab - cb); let normal = vec2(-tangent.y, tangent.x); let sigma = sign(dot(ab + cb, normal)); var p0 = line_width * sigma * ab_norm; var p1 = line_width * sigma * normal / dot(normal, ab_norm); var p2 = line_width * sigma * cb_norm; var screen = screen_b + position.x * p0 + position.y * p1 + position.z * p2; var depth = depth(clip_b); var clip_position = vec4(clip_b.w * ((2. * screen) / resolution - 1.), depth, clip_b.w); return VertexOutput(clip_position, color); } @vertex fn vertex_round(vertex: VertexInput) -> VertexOutput { let world_from_local = affine3_to_square(joints_gizmo.world_from_local); var clip_a = view.clip_from_world * world_from_local * vec4(vertex.position_a, 1.); var clip_b = view.clip_from_world * world_from_local * vec4(vertex.position_b, 1.); var clip_c = view.clip_from_world * world_from_local * vec4(vertex.position_c, 1.); // Manual near plane clipping to avoid errors when doing the perspective divide inside this shader. clip_a = clip_near_plane(clip_a, clip_c); clip_b = clip_near_plane(clip_b, clip_a); clip_c = clip_near_plane(clip_c, clip_b); clip_a = clip_near_plane(clip_a, clip_c); let resolution = view.viewport.zw; let screen_a = resolution * (0.5 * clip_a.xy / clip_a.w + 0.5); let screen_b = resolution * (0.5 * clip_b.xy / clip_b.w + 0.5); let screen_c = resolution * (0.5 * clip_c.xy / clip_c.w + 0.5); var color = vertex.color; var line_width = joints_gizmo.line_width; #ifdef PERSPECTIVE line_width /= clip_b.w; #endif // Line thinness fade from https://acegikmo.com/shapes/docs/#anti-aliasing if line_width > 0.0 && line_width < 1. { color.a *= line_width; line_width = 1.; } let ab = normalize(screen_b - screen_a); let cb = normalize(screen_b - screen_c); let ab_norm = vec2(-ab.y, ab.x); let cb_norm = vec2(cb.y, -cb.x); // We render `joints_gizmo.resolution`triangles. The vertices in each triangle are ordered as follows: // - 0: The 'center' vertex at `screen_b`. // - 1: The vertex closer to the ab line. // - 2: The vertex closer to the cb line. var in_triangle_index = f32(vertex.index) % 3.0; var tri_index = floor(f32(vertex.index) / 3.0); var radius = sign(in_triangle_index) * 0.5 * line_width; var theta = acos(dot(ab_norm, cb_norm)); let sigma = sign(dot(ab_norm, cb)); var angle = theta * (tri_index + in_triangle_index - 1) / f32(joints_gizmo.resolution); var position_x = sigma * radius * cos(angle); var position_y = radius * sin(angle); var screen = screen_b + position_x * ab_norm + position_y * ab; var depth = depth(clip_b); var clip_position = vec4(clip_b.w * ((2. * screen) / resolution - 1.), depth, clip_b.w); return VertexOutput(clip_position, color); } fn clip_near_plane(a: vec4, b: vec4) -> vec4 { // Move a if a is behind the near plane and b is in front. if a.z > a.w && b.z <= b.w { // Interpolate a towards b until it's at the near plane. let distance_a = a.z - a.w; let distance_b = b.z - b.w; // Add an epsilon to the interpolator to ensure that the point is // not just behind the clip plane due to floating-point imprecision. let t = distance_a / (distance_a - distance_b) + EPSILON; return mix(a, b, t); } return a; } fn depth(clip: vec4) -> f32 { var depth: f32; if joints_gizmo.depth_bias >= 0. { depth = clip.z * (1. - joints_gizmo.depth_bias); } else { // depth * (clip.w / depth)^-depth_bias. So that when -depth_bias is 1.0, this is equal to clip.w // and when equal to 0.0, it is exactly equal to depth. // the epsilon is here to prevent the depth from exceeding clip.w when -depth_bias = 1.0 // clip.w represents the near plane in homogeneous clip space in bevy, having a depth // of this value means nothing can be in front of this // The reason this uses an exponential function is that it makes it much easier for the // user to chose a value that is convenient for them depth = clip.z * exp2(-joints_gizmo.depth_bias * log2(clip.w / clip.z - EPSILON)); } return depth; } struct FragmentInput { @location(0) color: vec4, }; struct FragmentOutput { @location(0) color: vec4, }; @fragment fn fragment(in: FragmentInput) -> FragmentOutput { // return FragmentOutput(vec4(1, 1, 1, 1)); return FragmentOutput(in.color); }