use crate::utility::NonGenericTypeInfoCell; use crate::{ DynamicInfo, FromReflect, GetTypeRegistration, Reflect, ReflectMut, ReflectOwned, ReflectRef, TypeInfo, TypeRegistration, Typed, UnnamedField, }; use std::any::{Any, TypeId}; use std::fmt::{Debug, Formatter}; use std::slice::Iter; /// A reflected Rust tuple. /// /// This trait is automatically implemented for arbitrary tuples of up to 12 /// elements, provided that each element implements [`Reflect`]. /// /// # Example /// /// ``` /// use bevy_reflect::Tuple; /// /// # fn main() { /// let foo = ("blue".to_string(), 42_i32); /// assert_eq!(foo.field_len(), 2); /// /// let first = foo.field(0).unwrap(); /// assert_eq!(first.downcast_ref::(), Some(&"blue".to_string())); /// # } /// ``` pub trait Tuple: Reflect { /// Returns a reference to the value of the field with index `index` as a /// `&dyn Reflect`. fn field(&self, index: usize) -> Option<&dyn Reflect>; /// Returns a mutable reference to the value of the field with index `index` /// as a `&mut dyn Reflect`. fn field_mut(&mut self, index: usize) -> Option<&mut dyn Reflect>; /// Returns the number of fields in the tuple. fn field_len(&self) -> usize; /// Returns an iterator over the values of the tuple's fields. fn iter_fields(&self) -> TupleFieldIter; /// Drain the fields of this tuple to get a vector of owned values. fn drain(self: Box) -> Vec>; /// Clones the struct into a [`DynamicTuple`]. fn clone_dynamic(&self) -> DynamicTuple; } /// An iterator over the field values of a tuple. pub struct TupleFieldIter<'a> { pub(crate) tuple: &'a dyn Tuple, pub(crate) index: usize, } impl<'a> TupleFieldIter<'a> { pub fn new(value: &'a dyn Tuple) -> Self { TupleFieldIter { tuple: value, index: 0, } } } impl<'a> Iterator for TupleFieldIter<'a> { type Item = &'a dyn Reflect; fn next(&mut self) -> Option { let value = self.tuple.field(self.index); self.index += 1; value } fn size_hint(&self) -> (usize, Option) { let size = self.tuple.field_len(); (size, Some(size)) } } impl<'a> ExactSizeIterator for TupleFieldIter<'a> {} /// A convenience trait which combines fetching and downcasting of tuple /// fields. /// /// # Example /// /// ``` /// use bevy_reflect::GetTupleField; /// /// # fn main() { /// let foo = ("blue".to_string(), 42_i32); /// /// assert_eq!(foo.get_field::(0), Some(&"blue".to_string())); /// assert_eq!(foo.get_field::(1), Some(&42)); /// # } /// ``` pub trait GetTupleField { /// Returns a reference to the value of the field with index `index`, /// downcast to `T`. fn get_field(&self, index: usize) -> Option<&T>; /// Returns a mutable reference to the value of the field with index /// `index`, downcast to `T`. fn get_field_mut(&mut self, index: usize) -> Option<&mut T>; } impl GetTupleField for S { fn get_field(&self, index: usize) -> Option<&T> { self.field(index) .and_then(|value| value.downcast_ref::()) } fn get_field_mut(&mut self, index: usize) -> Option<&mut T> { self.field_mut(index) .and_then(|value| value.downcast_mut::()) } } impl GetTupleField for dyn Tuple { fn get_field(&self, index: usize) -> Option<&T> { self.field(index) .and_then(|value| value.downcast_ref::()) } fn get_field_mut(&mut self, index: usize) -> Option<&mut T> { self.field_mut(index) .and_then(|value| value.downcast_mut::()) } } /// A container for compile-time tuple info. #[derive(Clone, Debug)] pub struct TupleInfo { type_name: &'static str, type_id: TypeId, fields: Box<[UnnamedField]>, #[cfg(feature = "documentation")] docs: Option<&'static str>, } impl TupleInfo { /// Create a new [`TupleInfo`]. /// /// # Arguments /// /// * `fields`: The fields of this tuple in the order they are defined /// pub fn new(fields: &[UnnamedField]) -> Self { Self { type_name: std::any::type_name::(), type_id: TypeId::of::(), fields: fields.to_vec().into_boxed_slice(), #[cfg(feature = "documentation")] docs: None, } } /// Sets the docstring for this tuple. #[cfg(feature = "documentation")] pub fn with_docs(self, docs: Option<&'static str>) -> Self { Self { docs, ..self } } /// Get the field at the given index. pub fn field_at(&self, index: usize) -> Option<&UnnamedField> { self.fields.get(index) } /// Iterate over the fields of this tuple. pub fn iter(&self) -> Iter<'_, UnnamedField> { self.fields.iter() } /// The total number of fields in this tuple. pub fn field_len(&self) -> usize { self.fields.len() } /// The [type name] of the tuple. /// /// [type name]: std::any::type_name pub fn type_name(&self) -> &'static str { self.type_name } /// The [`TypeId`] of the tuple. pub fn type_id(&self) -> TypeId { self.type_id } /// Check if the given type matches the tuple type. pub fn is(&self) -> bool { TypeId::of::() == self.type_id } /// The docstring of this tuple, if any. #[cfg(feature = "documentation")] pub fn docs(&self) -> Option<&'static str> { self.docs } } /// A tuple which allows fields to be added at runtime. #[derive(Default, Debug)] pub struct DynamicTuple { name: String, fields: Vec>, } impl DynamicTuple { /// Returns the type name of the tuple. /// /// The tuple's name is automatically generated from its element types. pub fn name(&self) -> &str { &self.name } /// Manually sets the type name of the tuple. /// /// Note that the tuple name will be overwritten when elements are added. pub fn set_name(&mut self, name: String) { self.name = name; } /// Appends an element with value `value` to the tuple. pub fn insert_boxed(&mut self, value: Box) { self.fields.push(value); self.generate_name(); } /// Appends a typed element with value `value` to the tuple. pub fn insert(&mut self, value: T) { self.insert_boxed(Box::new(value)); self.generate_name(); } fn generate_name(&mut self) { let name = &mut self.name; name.clear(); name.push('('); for (i, field) in self.fields.iter().enumerate() { if i > 0 { name.push_str(", "); } name.push_str(field.type_name()); } name.push(')'); } } impl Tuple for DynamicTuple { #[inline] fn field(&self, index: usize) -> Option<&dyn Reflect> { self.fields.get(index).map(|field| &**field) } #[inline] fn field_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> { self.fields.get_mut(index).map(|field| &mut **field) } #[inline] fn field_len(&self) -> usize { self.fields.len() } #[inline] fn iter_fields(&self) -> TupleFieldIter { TupleFieldIter { tuple: self, index: 0, } } #[inline] fn drain(self: Box) -> Vec> { self.fields } #[inline] fn clone_dynamic(&self) -> DynamicTuple { DynamicTuple { name: self.name.clone(), fields: self .fields .iter() .map(|value| value.clone_value()) .collect(), } } } impl Reflect for DynamicTuple { #[inline] fn type_name(&self) -> &str { self.name() } #[inline] fn get_type_info(&self) -> &'static TypeInfo { ::type_info() } #[inline] fn into_any(self: Box) -> Box { self } #[inline] fn as_any(&self) -> &dyn Any { self } #[inline] fn as_any_mut(&mut self) -> &mut dyn Any { self } #[inline] fn into_reflect(self: Box) -> Box { self } #[inline] fn as_reflect(&self) -> &dyn Reflect { self } #[inline] fn as_reflect_mut(&mut self) -> &mut dyn Reflect { self } #[inline] fn clone_value(&self) -> Box { Box::new(self.clone_dynamic()) } #[inline] fn reflect_ref(&self) -> ReflectRef { ReflectRef::Tuple(self) } #[inline] fn reflect_mut(&mut self) -> ReflectMut { ReflectMut::Tuple(self) } #[inline] fn reflect_owned(self: Box) -> ReflectOwned { ReflectOwned::Tuple(self) } fn apply(&mut self, value: &dyn Reflect) { tuple_apply(self, value); } fn set(&mut self, value: Box) -> Result<(), Box> { *self = value.take()?; Ok(()) } fn reflect_partial_eq(&self, value: &dyn Reflect) -> Option { tuple_partial_eq(self, value) } fn debug(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "DynamicTuple(")?; tuple_debug(self, f)?; write!(f, ")") } } impl Typed for DynamicTuple { fn type_info() -> &'static TypeInfo { static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new(); CELL.get_or_set(|| TypeInfo::Dynamic(DynamicInfo::new::())) } } /// Applies the elements of `b` to the corresponding elements of `a`. /// /// # Panics /// /// This function panics if `b` is not a tuple. #[inline] pub fn tuple_apply(a: &mut T, b: &dyn Reflect) { if let ReflectRef::Tuple(tuple) = b.reflect_ref() { for (i, value) in tuple.iter_fields().enumerate() { if let Some(v) = a.field_mut(i) { v.apply(value); } } } else { panic!("Attempted to apply non-Tuple type to Tuple type."); } } /// Compares a [`Tuple`] with a [`Reflect`] value. /// /// Returns true if and only if all of the following are true: /// - `b` is a tuple; /// - `b` has the same number of elements as `a`; /// - [`Reflect::reflect_partial_eq`] returns `Some(true)` for pairwise elements of `a` and `b`. /// /// Returns [`None`] if the comparison couldn't even be performed. #[inline] pub fn tuple_partial_eq(a: &T, b: &dyn Reflect) -> Option { let ReflectRef::Tuple(b) = b.reflect_ref() else { return Some(false); }; if a.field_len() != b.field_len() { return Some(false); } for (a_field, b_field) in a.iter_fields().zip(b.iter_fields()) { let eq_result = a_field.reflect_partial_eq(b_field); if let failed @ (Some(false) | None) = eq_result { return failed; } } Some(true) } /// The default debug formatter for [`Tuple`] types. /// /// # Example /// ``` /// use bevy_reflect::Reflect; /// /// let my_tuple: &dyn Reflect = &(1, 2, 3); /// println!("{:#?}", my_tuple); /// /// // Output: /// /// // ( /// // 1, /// // 2, /// // 3, /// // ) /// ``` #[inline] pub fn tuple_debug(dyn_tuple: &dyn Tuple, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { let mut debug = f.debug_tuple(""); for field in dyn_tuple.iter_fields() { debug.field(&field as &dyn Debug); } debug.finish() } macro_rules! impl_reflect_tuple { {$($index:tt : $name:tt),*} => { impl<$($name: Reflect),*> Tuple for ($($name,)*) { #[inline] fn field(&self, index: usize) -> Option<&dyn Reflect> { match index { $($index => Some(&self.$index as &dyn Reflect),)* _ => None, } } #[inline] fn field_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> { match index { $($index => Some(&mut self.$index as &mut dyn Reflect),)* _ => None, } } #[inline] fn field_len(&self) -> usize { let indices: &[usize] = &[$($index as usize),*]; indices.len() } #[inline] fn iter_fields(&self) -> TupleFieldIter { TupleFieldIter { tuple: self, index: 0, } } #[inline] fn drain(self: Box) -> Vec> { vec![ $(Box::new(self.$index),)* ] } #[inline] fn clone_dynamic(&self) -> DynamicTuple { let mut dyn_tuple = DynamicTuple { name: String::default(), fields: self .iter_fields() .map(|value| value.clone_value()) .collect(), }; dyn_tuple.generate_name(); dyn_tuple } } impl<$($name: Reflect),*> Reflect for ($($name,)*) { fn type_name(&self) -> &str { std::any::type_name::() } fn get_type_info(&self) -> &'static TypeInfo { ::type_info() } fn into_any(self: Box) -> Box { self } fn as_any(&self) -> &dyn Any { self } fn as_any_mut(&mut self) -> &mut dyn Any { self } fn into_reflect(self: Box) -> Box { self } fn as_reflect(&self) -> &dyn Reflect { self } fn as_reflect_mut(&mut self) -> &mut dyn Reflect { self } fn apply(&mut self, value: &dyn Reflect) { crate::tuple_apply(self, value); } fn set(&mut self, value: Box) -> Result<(), Box> { *self = value.take()?; Ok(()) } fn reflect_ref(&self) -> ReflectRef { ReflectRef::Tuple(self) } fn reflect_mut(&mut self) -> ReflectMut { ReflectMut::Tuple(self) } fn reflect_owned(self: Box) -> ReflectOwned { ReflectOwned::Tuple(self) } fn clone_value(&self) -> Box { Box::new(self.clone_dynamic()) } fn reflect_partial_eq(&self, value: &dyn Reflect) -> Option { crate::tuple_partial_eq(self, value) } } impl <$($name: Reflect),*> Typed for ($($name,)*) { fn type_info() -> &'static TypeInfo { static CELL: $crate::utility::GenericTypeInfoCell = $crate::utility::GenericTypeInfoCell::new(); CELL.get_or_insert::(|| { let fields = [ $(UnnamedField::new::<$name>($index),)* ]; let info = TupleInfo::new::(&fields); TypeInfo::Tuple(info) }) } } impl<$($name: Reflect + Typed),*> GetTypeRegistration for ($($name,)*) { fn get_type_registration() -> TypeRegistration { TypeRegistration::of::<($($name,)*)>() } } impl<$($name: FromReflect),*> FromReflect for ($($name,)*) { fn from_reflect(reflect: &dyn Reflect) -> Option { if let ReflectRef::Tuple(_ref_tuple) = reflect.reflect_ref() { Some( ( $( <$name as FromReflect>::from_reflect(_ref_tuple.field($index)?)?, )* ) ) } else { None } } } } } impl_reflect_tuple! {} impl_reflect_tuple! {0: A} impl_reflect_tuple! {0: A, 1: B} impl_reflect_tuple! {0: A, 1: B, 2: C} impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D} impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E} impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F} impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G} impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H} impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H, 8: I} impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H, 8: I, 9: J} impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H, 8: I, 9: J, 10: K} impl_reflect_tuple! {0: A, 1: B, 2: C, 3: D, 4: E, 5: F, 6: G, 7: H, 8: I, 9: J, 10: K, 11: L}