use bevy_ecs::{ entity::{Entity, EntityMap, MapEntities, MapEntitiesError}, prelude::{Component, ReflectComponent}, }; use bevy_math::{DVec2, IVec2, Vec2}; use bevy_reflect::{std_traits::ReflectDefault, FromReflect, Reflect}; #[cfg(feature = "serialize")] use bevy_reflect::{ReflectDeserialize, ReflectSerialize}; use bevy_utils::tracing::warn; use crate::CursorIcon; /// Marker component for the window considered the primary window. /// /// Currently this is assumed to only exist on 1 entity at a time. #[derive(Default, Debug, Component, PartialEq, Eq, PartialOrd, Ord, Copy, Clone, Reflect)] #[reflect(Component)] pub struct PrimaryWindow; /// Reference to a window, whether it be a direct link to a specific entity or /// a more vague defaulting choice. #[repr(C)] #[derive(Default, Copy, Clone, Debug, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] pub enum WindowRef { /// This will be linked to the primary window that is created by default /// in the [`WindowPlugin`](crate::WindowPlugin::primary_window). #[default] Primary, /// A more direct link to a window entity. /// /// Use this if you want to reference a secondary/tertiary/... window. /// /// To create a new window you can spawn an entity with a [`Window`], /// then you can use that entity here for usage in cameras. Entity(Entity), } impl WindowRef { /// Normalize the window reference so that it can be compared to other window references. pub fn normalize(&self, primary_window: Option) -> Option { let entity = match self { Self::Primary => primary_window, Self::Entity(entity) => Some(*entity), }; entity.map(NormalizedWindowRef) } } impl MapEntities for WindowRef { fn map_entities(&mut self, entity_map: &EntityMap) -> Result<(), MapEntitiesError> { match self { Self::Entity(entity) => { *entity = entity_map.get(*entity)?; Ok(()) } Self::Primary => Ok(()), } } } /// A flattened representation of a window reference for equality/hashing purposes. /// /// For most purposes you probably want to use the unnormalized version [`WindowRef`]. #[repr(C)] #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] pub struct NormalizedWindowRef(Entity); impl NormalizedWindowRef { /// Fetch the entity of this window reference pub fn entity(&self) -> Entity { self.0 } } /// Define how a window will be created and how it will behave. #[derive(Component, Debug, Clone, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Component, Default)] pub struct Window { /// The cursor of this window. pub cursor: Cursor, /// What presentation mode to give the window. pub present_mode: PresentMode, /// Which fullscreen or windowing mode should be used? pub mode: WindowMode, /// Where the window should be placed. pub position: WindowPosition, /// What resolution the window should have. pub resolution: WindowResolution, /// Stores the title of the window. pub title: String, /// How the alpha channel of textures should be handled while compositing. pub composite_alpha_mode: CompositeAlphaMode, /// Which size limits to give the window. pub resize_constraints: WindowResizeConstraints, /// Should the window be resizable? /// /// Note: This does not stop the program from fullscreening/setting /// the size programmatically. pub resizable: bool, /// Should the window have decorations enabled? /// /// (Decorations are the minimize, maximize, and close buttons on desktop apps) /// // ## Platform-specific // // **`iOS`**, **`Android`**, and the **`Web`** do not have decorations. pub decorations: bool, /// Should the window be transparent? /// /// Defines whether the background of the window should be transparent. /// /// ## Platform-specific /// - iOS / Android / Web: Unsupported. /// - macOS X: Not working as expected. /// - Windows 11: Not working as expected /// macOS X transparent works with winit out of the box, so this issue might be related to: /// Windows 11 is related to pub transparent: bool, /// Should the window start focused? pub focused: bool, /// Should the window always be on top of other windows? /// /// ## Platform-specific /// /// - iOS / Android / Web / Wayland: Unsupported. pub always_on_top: bool, /// The "html canvas" element selector. /// /// If set, this selector will be used to find a matching html canvas element, /// rather than creating a new one. /// Uses the [CSS selector format](https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector). /// /// This value has no effect on non-web platforms. pub canvas: Option, /// Whether or not to fit the canvas element's size to its parent element's size. /// /// **Warning**: this will not behave as expected for parents that set their size according to the size of their /// children. This creates a "feedback loop" that will result in the canvas growing on each resize. When using this /// feature, ensure the parent's size is not affected by its children. /// /// This value has no effect on non-web platforms. pub fit_canvas_to_parent: bool, /// Whether or not to stop events from propagating out of the canvas element /// /// When `true`, this will prevent common browser hotkeys like F5, F12, Ctrl+R, tab, etc. /// from performing their default behavior while the bevy app has focus. /// /// This value has no effect on non-web platforms. pub prevent_default_event_handling: bool, /// Stores internal state that isn't directly accessible. pub internal: InternalWindowState, } impl Default for Window { fn default() -> Self { Self { title: "Bevy App".to_owned(), cursor: Default::default(), present_mode: Default::default(), mode: Default::default(), position: Default::default(), resolution: Default::default(), internal: Default::default(), composite_alpha_mode: Default::default(), resize_constraints: Default::default(), resizable: true, decorations: true, transparent: false, focused: true, always_on_top: false, fit_canvas_to_parent: false, prevent_default_event_handling: true, canvas: None, } } } impl Window { /// Setting this to true will attempt to maximize the window. /// /// Setting it to false will attempt to un-maximize the window. pub fn set_maximized(&mut self, maximized: bool) { self.internal.maximize_request = Some(maximized); } /// Setting this to true will attempt to minimize the window. /// /// Setting it to false will attempt to un-minimize the window. pub fn set_minimized(&mut self, minimized: bool) { self.internal.minimize_request = Some(minimized); } /// The window's client area width in logical pixels. #[inline] pub fn width(&self) -> f32 { self.resolution.width() } /// The window's client area height in logical pixels. #[inline] pub fn height(&self) -> f32 { self.resolution.height() } /// The window's client area width in physical pixels. #[inline] pub fn physical_width(&self) -> u32 { self.resolution.physical_width() } /// The window's client area height in physical pixels. #[inline] pub fn physical_height(&self) -> u32 { self.resolution.physical_height() } /// The window's scale factor. #[inline] pub fn scale_factor(&self) -> f64 { self.resolution.scale_factor() } /// The cursor position in this window #[inline] pub fn cursor_position(&self) -> Option { self.cursor .physical_position .map(|position| (position / self.scale_factor()).as_vec2()) } /// The physical cursor position in this window #[inline] pub fn physical_cursor_position(&self) -> Option { self.cursor .physical_position .map(|position| position.as_vec2()) } /// Set the cursor position in this window pub fn set_cursor_position(&mut self, position: Option) { self.cursor.physical_position = position.map(|p| p.as_dvec2() * self.scale_factor()); } /// Set the physical cursor position in this window pub fn set_physical_cursor_position(&mut self, position: Option) { self.cursor.physical_position = position; } } /// The size limits on a window. /// /// These values are measured in logical pixels, so the user's /// scale factor does affect the size limits on the window. /// Please note that if the window is resizable, then when the window is /// maximized it may have a size outside of these limits. The functionality /// required to disable maximizing is not yet exposed by winit. #[derive(Debug, Clone, Copy, PartialEq, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Debug, PartialEq, Default)] pub struct WindowResizeConstraints { /// The minimum width the window can have. pub min_width: f32, /// The minimum height the window can have. pub min_height: f32, /// The maximum width the window can have. pub max_width: f32, /// The maximum height the window can have. pub max_height: f32, } impl Default for WindowResizeConstraints { fn default() -> Self { Self { min_width: 180., min_height: 120., max_width: f32::INFINITY, max_height: f32::INFINITY, } } } impl WindowResizeConstraints { /// Checks if the constraints are valid. /// /// Will output warnings if it isn't. #[must_use] pub fn check_constraints(&self) -> Self { let WindowResizeConstraints { mut min_width, mut min_height, mut max_width, mut max_height, } = self; min_width = min_width.max(1.); min_height = min_height.max(1.); if max_width < min_width { warn!( "The given maximum width {} is smaller than the minimum width {}", max_width, min_width ); max_width = min_width; } if max_height < min_height { warn!( "The given maximum height {} is smaller than the minimum height {}", max_height, min_height ); max_height = min_height; } WindowResizeConstraints { min_width, min_height, max_width, max_height, } } } /// Stores data about the window's cursor. #[derive(Debug, Copy, Clone, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Debug, Default)] pub struct Cursor { /// Get the current [`CursorIcon`] while inside the window. pub icon: CursorIcon, /// Whether the cursor is visible or not. /// /// ## Platform-specific /// /// - **`Windows`**, **`X11`**, and **`Wayland`**: The cursor is hidden only when inside the window. /// To stop the cursor from leaving the window, change [`Cursor::grab_mode`] to [`CursorGrabMode::Locked`] or [`CursorGrabMode::Confined`] /// - **`macOS`**: The cursor is hidden only when the window is focused. /// - **`iOS`** and **`Android`** do not have cursors pub visible: bool, /// Whether or not the cursor is locked. /// /// ## Platform-specific /// /// - **`Windows`** doesn't support [`CursorGrabMode::Locked`] /// - **`macOS`** doesn't support [`CursorGrabMode::Confined`] /// - **`iOS/Android`** don't have cursors. /// /// Since `Windows` and `macOS` have different [`CursorGrabMode`] support, we first try to set the grab mode that was asked for. If it doesn't work then use the alternate grab mode. pub grab_mode: CursorGrabMode, /// Set whether or not mouse events within *this* window are captured or fall through to the Window below. /// /// ## Platform-specific /// /// - iOS / Android / Web / X11: Unsupported. pub hit_test: bool, /// The position of this window's cursor. physical_position: Option, } impl Default for Cursor { fn default() -> Self { Cursor { icon: CursorIcon::Default, visible: true, grab_mode: CursorGrabMode::None, hit_test: true, physical_position: None, } } } /// Defines where window should be placed at on creation. #[derive(Default, Debug, Clone, Copy, PartialEq, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Debug, PartialEq)] pub enum WindowPosition { /// Position will be set by the window manager #[default] Automatic, /// Window will be centered on the selected monitor /// /// Note that this does not account for window decorations. Centered(MonitorSelection), /// The window's top-left corner will be placed at the specified position (in physical pixels) /// /// (0,0) represents top-left corner of screen space. At(IVec2), } impl WindowPosition { /// Creates a new [`WindowPosition`] at a position. pub fn new(position: IVec2) -> Self { Self::At(position) } /// Set the position to a specific point. pub fn set(&mut self, position: IVec2) { *self = WindowPosition::At(position); } /// Set the window to a specific monitor. pub fn center(&mut self, monitor: MonitorSelection) { *self = WindowPosition::Centered(monitor); } } /// ## Window Sizes /// /// There are three sizes associated with a window. The physical size which is /// the height and width in physical pixels on the monitor. The logical size /// which is the physical size scaled by an operating system provided factor to /// account for monitors with differing pixel densities or user preference. And /// the requested size, measured in logical pixels, which is the value submitted /// to the API when creating the window, or requesting that it be resized. /// /// The actual size, in logical pixels, of the window may not match the /// requested size due to operating system limits on the window size, or the /// quantization of the logical size when converting the physical size to the /// logical size through the scaling factor. #[derive(Debug, Clone, PartialEq, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Debug, PartialEq, Default)] pub struct WindowResolution { physical_width: u32, physical_height: u32, scale_factor_override: Option, scale_factor: f64, } impl Default for WindowResolution { fn default() -> Self { WindowResolution { physical_width: 1280, physical_height: 720, scale_factor_override: None, scale_factor: 1.0, } } } impl WindowResolution { /// Creates a new [`WindowResolution`]. pub fn new(logical_width: f32, logical_height: f32) -> Self { Self { physical_width: logical_width as u32, physical_height: logical_height as u32, ..Default::default() } } /// Builder method for adding a scale factor override to the resolution. pub fn with_scale_factor_override(mut self, scale_factor_override: f64) -> Self { self.scale_factor_override = Some(scale_factor_override); self } /// The window's client area width in logical pixels. #[inline] pub fn width(&self) -> f32 { (self.physical_width() as f64 / self.scale_factor()) as f32 } /// The window's client area width in logical pixels. #[inline] pub fn height(&self) -> f32 { (self.physical_height() as f64 / self.scale_factor()) as f32 } /// The window's client area width in physical pixels. #[inline] pub fn physical_width(&self) -> u32 { self.physical_width } /// The window's client area height in physical pixels. #[inline] pub fn physical_height(&self) -> u32 { self.physical_height } /// The ratio of physical pixels to logical pixels /// /// `physical_pixels = logical_pixels * scale_factor` pub fn scale_factor(&self) -> f64 { self.scale_factor_override .unwrap_or_else(|| self.base_scale_factor()) } /// The window scale factor as reported by the window backend. /// /// This value is unaffected by [`WindowResolution::scale_factor_override`]. #[inline] pub fn base_scale_factor(&self) -> f64 { self.scale_factor } /// The scale factor set with [`WindowResolution::set_scale_factor_override`]. /// /// This value may be different from the scale factor reported by the window backend. #[inline] pub fn scale_factor_override(&self) -> Option { self.scale_factor_override } /// Set the window's logical resolution. #[inline] pub fn set(&mut self, width: f32, height: f32) { self.set_physical_resolution( (width as f64 * self.scale_factor()) as u32, (height as f64 * self.scale_factor()) as u32, ); } /// Set the window's physical resolution. /// /// This will ignore the scale factor setting, so most of the time you should /// prefer to use [`WindowResolution::set`]. #[inline] pub fn set_physical_resolution(&mut self, width: u32, height: u32) { self.physical_width = width; self.physical_height = height; } /// Set the window's scale factor, this may get overriden by the backend. #[inline] pub fn set_scale_factor(&mut self, scale_factor: f64) { let (width, height) = (self.width(), self.height()); self.scale_factor = scale_factor; self.set(width, height); } /// Set the window's scale factor, this will be used over what the backend decides. #[inline] pub fn set_scale_factor_override(&mut self, scale_factor_override: Option) { let (width, height) = (self.width(), self.height()); self.scale_factor_override = scale_factor_override; self.set(width, height); } } impl From<(I, I)> for WindowResolution where I: Into, { fn from((width, height): (I, I)) -> WindowResolution { WindowResolution::new(width.into(), height.into()) } } impl From<[I; 2]> for WindowResolution where I: Into, { fn from([width, height]: [I; 2]) -> WindowResolution { WindowResolution::new(width.into(), height.into()) } } impl From for WindowResolution { fn from(res: bevy_math::Vec2) -> WindowResolution { WindowResolution::new(res.x, res.y) } } impl From for WindowResolution { fn from(res: bevy_math::DVec2) -> WindowResolution { WindowResolution::new(res.x as f32, res.y as f32) } } /// Defines if and how the cursor is grabbed. /// /// ## Platform-specific /// /// - **`Windows`** doesn't support [`CursorGrabMode::Locked`] /// - **`macOS`** doesn't support [`CursorGrabMode::Confined`] /// - **`iOS/Android`** don't have cursors. /// /// Since `Windows` and `macOS` have different [`CursorGrabMode`] support, we first try to set the grab mode that was asked for. If it doesn't work then use the alternate grab mode. #[derive(Default, Debug, Clone, Copy, PartialEq, Eq, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Debug, PartialEq, Default)] pub enum CursorGrabMode { /// The cursor can freely leave the window. #[default] None, /// The cursor is confined to the window area. Confined, /// The cursor is locked inside the window area to a certain position. Locked, } /// Stores internal state that isn't directly accessible. #[derive(Default, Debug, Copy, Clone, PartialEq, Eq, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Debug, PartialEq, Default)] pub struct InternalWindowState { /// If this is true then next frame we will ask to minimize the window. minimize_request: Option, /// If this is true then next frame we will ask to maximize/un-maximize the window depending on `maximized`. maximize_request: Option, } impl InternalWindowState { /// Consumes the current maximize request, if it exists. This should only be called by window backends. pub fn take_maximize_request(&mut self) -> Option { self.maximize_request.take() } /// Consumes the current minimize request, if it exists. This should only be called by window backends. pub fn take_minimize_request(&mut self) -> Option { self.minimize_request.take() } } /// Defines which monitor to use. #[derive(Debug, Clone, Copy, PartialEq, Eq, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Debug, PartialEq)] pub enum MonitorSelection { /// Uses current monitor of the window. /// /// Will fall back to the system default if the window has not yet been created. Current, /// Uses primary monitor of the system. Primary, /// Uses monitor with the specified index. Index(usize), } /// Presentation mode for a window. /// /// The presentation mode specifies when a frame is presented to the window. The `Fifo` /// option corresponds to a traditional `VSync`, where the framerate is capped by the /// display refresh rate. Both `Immediate` and `Mailbox` are low-latency and are not /// capped by the refresh rate, but may not be available on all platforms. Tearing /// may be observed with `Immediate` mode, but will not be observed with `Mailbox` or /// `Fifo`. /// /// `AutoVsync` or `AutoNoVsync` will gracefully fallback to `Fifo` when unavailable. /// /// `Immediate` or `Mailbox` will panic if not supported by the platform. #[repr(C)] #[derive(Default, Copy, Clone, Debug, PartialEq, Eq, Hash, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Debug, PartialEq, Hash)] #[doc(alias = "vsync")] pub enum PresentMode { /// Chooses FifoRelaxed -> Fifo based on availability. /// /// Because of the fallback behavior, it is supported everywhere. AutoVsync = 0, /// Chooses Immediate -> Mailbox -> Fifo (on web) based on availability. /// /// Because of the fallback behavior, it is supported everywhere. AutoNoVsync = 1, /// The presentation engine does **not** wait for a vertical blanking period and /// the request is presented immediately. This is a low-latency presentation mode, /// but visible tearing may be observed. Not optimal for mobile. /// /// Selecting this variant will panic if not supported, it is preferred to use /// [`PresentMode::AutoNoVsync`]. Immediate = 2, /// The presentation engine waits for the next vertical blanking period to update /// the current image, but frames may be submitted without delay. This is a low-latency /// presentation mode and visible tearing will **not** be observed. Not optimal for mobile. /// /// Selecting this variant will panic if not supported, it is preferred to use /// [`PresentMode::AutoNoVsync`]. Mailbox = 3, /// The presentation engine waits for the next vertical blanking period to update /// the current image. The framerate will be capped at the display refresh rate, /// corresponding to the `VSync`. Tearing cannot be observed. Optimal for mobile. #[default] Fifo = 4, // NOTE: The explicit ordinal values mirror wgpu. } /// Specifies how the alpha channel of the textures should be handled during compositing. #[repr(C)] #[derive(Default, Debug, Clone, Copy, PartialEq, Eq, Hash, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Debug, PartialEq, Hash)] pub enum CompositeAlphaMode { /// Chooses either `Opaque` or `Inherit` automatically, depending on the /// `alpha_mode` that the current surface can support. #[default] Auto = 0, /// The alpha channel, if it exists, of the textures is ignored in the /// compositing process. Instead, the textures is treated as if it has a /// constant alpha of 1.0. Opaque = 1, /// The alpha channel, if it exists, of the textures is respected in the /// compositing process. The non-alpha channels of the textures are /// expected to already be multiplied by the alpha channel by the /// application. PreMultiplied = 2, /// The alpha channel, if it exists, of the textures is respected in the /// compositing process. The non-alpha channels of the textures are not /// expected to already be multiplied by the alpha channel by the /// application; instead, the compositor will multiply the non-alpha /// channels of the texture by the alpha channel during compositing. PostMultiplied = 3, /// The alpha channel, if it exists, of the textures is unknown for processing /// during compositing. Instead, the application is responsible for setting /// the composite alpha blending mode using native WSI command. If not set, /// then a platform-specific default will be used. Inherit = 4, } /// Defines the way a window is displayed #[derive(Default, Debug, Clone, Copy, PartialEq, Eq, Reflect, FromReflect)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), reflect(Serialize, Deserialize) )] #[reflect(Debug, PartialEq)] pub enum WindowMode { /// Creates a window that uses the given size. #[default] Windowed, /// Creates a borderless window that uses the full size of the screen. BorderlessFullscreen, /// Creates a fullscreen window that will render at desktop resolution. The app will use the closest supported size /// from the given size and scale it to fit the screen. SizedFullscreen, /// Creates a fullscreen window that uses the maximum supported size. Fullscreen, }