#define_import_path bevy_pbr::clustered_forward #import bevy_pbr::{ mesh_view_bindings as bindings, utils::hsv2rgb, } // NOTE: Keep in sync with bevy_pbr/src/light.rs fn view_z_to_z_slice(view_z: f32, is_orthographic: bool) -> u32 { var z_slice: u32 = 0u; if (is_orthographic) { // NOTE: view_z is correct in the orthographic case z_slice = u32(floor((view_z - bindings::lights.cluster_factors.z) * bindings::lights.cluster_factors.w)); } else { // NOTE: had to use -view_z to make it positive else log(negative) is nan z_slice = u32(log(-view_z) * bindings::lights.cluster_factors.z - bindings::lights.cluster_factors.w + 1.0); } // NOTE: We use min as we may limit the far z plane used for clustering to be closer than // the furthest thing being drawn. This means that we need to limit to the maximum cluster. return min(z_slice, bindings::lights.cluster_dimensions.z - 1u); } fn fragment_cluster_index(frag_coord: vec2, view_z: f32, is_orthographic: bool) -> u32 { let xy = vec2(floor((frag_coord - bindings::view.viewport.xy) * bindings::lights.cluster_factors.xy)); let z_slice = view_z_to_z_slice(view_z, is_orthographic); // NOTE: Restricting cluster index to avoid undefined behavior when accessing uniform buffer // arrays based on the cluster index. return min( (xy.y * bindings::lights.cluster_dimensions.x + xy.x) * bindings::lights.cluster_dimensions.z + z_slice, bindings::lights.cluster_dimensions.w - 1u ); } // this must match CLUSTER_COUNT_SIZE in light.rs const CLUSTER_COUNT_SIZE = 9u; fn unpack_offset_and_counts(cluster_index: u32) -> vec3 { #if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3 return bindings::cluster_offsets_and_counts.data[cluster_index].xyz; #else let offset_and_counts = bindings::cluster_offsets_and_counts.data[cluster_index >> 2u][cluster_index & ((1u << 2u) - 1u)]; // [ 31 .. 18 | 17 .. 9 | 8 .. 0 ] // [ offset | point light count | spot light count ] return vec3( (offset_and_counts >> (CLUSTER_COUNT_SIZE * 2u)) & ((1u << (32u - (CLUSTER_COUNT_SIZE * 2u))) - 1u), (offset_and_counts >> CLUSTER_COUNT_SIZE) & ((1u << CLUSTER_COUNT_SIZE) - 1u), offset_and_counts & ((1u << CLUSTER_COUNT_SIZE) - 1u), ); #endif } fn get_light_id(index: u32) -> u32 { #if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3 return bindings::cluster_light_index_lists.data[index]; #else // The index is correct but in cluster_light_index_lists we pack 4 u8s into a u32 // This means the index into cluster_light_index_lists is index / 4 let indices = bindings::cluster_light_index_lists.data[index >> 4u][(index >> 2u) & ((1u << 2u) - 1u)]; // And index % 4 gives the sub-index of the u8 within the u32 so we shift by 8 * sub-index return (indices >> (8u * (index & ((1u << 2u) - 1u)))) & ((1u << 8u) - 1u); #endif } fn cluster_debug_visualization( output_color: vec4, view_z: f32, is_orthographic: bool, offset_and_counts: vec3, cluster_index: u32, ) -> vec4 { // Cluster allocation debug (using 'over' alpha blending) #ifdef CLUSTERED_FORWARD_DEBUG_Z_SLICES // NOTE: This debug mode visualises the z-slices let cluster_overlay_alpha = 0.1; var z_slice: u32 = view_z_to_z_slice(view_z, is_orthographic); // A hack to make the colors alternate a bit more if ((z_slice & 1u) == 1u) { z_slice = z_slice + bindings::lights.cluster_dimensions.z / 2u; } let slice_color = hsv2rgb(f32(z_slice) / f32(bindings::lights.cluster_dimensions.z + 1u), 1.0, 0.5); output_color = vec4( (1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * slice_color, output_color.a ); #endif // CLUSTERED_FORWARD_DEBUG_Z_SLICES #ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_LIGHT_COMPLEXITY // NOTE: This debug mode visualises the number of lights within the cluster that contains // the fragment. It shows a sort of lighting complexity measure. let cluster_overlay_alpha = 0.1; let max_light_complexity_per_cluster = 64.0; output_color.r = (1.0 - cluster_overlay_alpha) * output_color.r + cluster_overlay_alpha * smoothStep(0.0, max_light_complexity_per_cluster, f32(offset_and_counts[1] + offset_and_counts[2])); output_color.g = (1.0 - cluster_overlay_alpha) * output_color.g + cluster_overlay_alpha * (1.0 - smoothStep(0.0, max_light_complexity_per_cluster, f32(offset_and_counts[1] + offset_and_counts[2]))); #endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_LIGHT_COMPLEXITY #ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY // NOTE: Visualizes the cluster to which the fragment belongs let cluster_overlay_alpha = 0.1; let cluster_color = hsv2rgb(random1D(f32(cluster_index)), 1.0, 0.5); output_color = vec4( (1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * cluster_color, output_color.a ); #endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY return output_color; }