//! Defines the [`World`] and APIs for accessing it directly. mod entity_ref; pub mod error; mod spawn_batch; pub mod unsafe_world_cell; mod world_cell; pub use crate::change_detection::{Mut, Ref, CHECK_TICK_THRESHOLD}; pub use entity_ref::{EntityMut, EntityRef, EntityWorldMut}; pub use spawn_batch::*; pub use world_cell::*; use crate::{ archetype::{ArchetypeComponentId, ArchetypeId, ArchetypeRow, Archetypes}, bundle::{Bundle, BundleInserter, BundleSpawner, Bundles}, change_detection::{MutUntyped, TicksMut}, component::{Component, ComponentDescriptor, ComponentId, ComponentInfo, Components, Tick}, entity::{AllocAtWithoutReplacement, Entities, Entity, EntityLocation}, event::{Event, EventId, Events, SendBatchIds}, query::{DebugCheckedUnwrap, QueryEntityError, QueryState, ReadOnlyWorldQuery, WorldQuery}, removal_detection::RemovedComponentEvents, schedule::{Schedule, ScheduleLabel, Schedules}, storage::{ResourceData, Storages}, system::Resource, world::error::TryRunScheduleError, }; use bevy_ptr::{OwningPtr, Ptr}; use bevy_utils::tracing::warn; use std::{ any::TypeId, fmt, mem::MaybeUninit, sync::atomic::{AtomicU32, Ordering}, }; mod identifier; pub use identifier::WorldId; use self::unsafe_world_cell::{UnsafeEntityCell, UnsafeWorldCell}; /// Stores and exposes operations on [entities](Entity), [components](Component), resources, /// and their associated metadata. /// /// Each [`Entity`] has a set of components. Each component can have up to one instance of each /// component type. Entity components can be created, updated, removed, and queried using a given /// [`World`]. /// /// For complex access patterns involving [`SystemParam`](crate::system::SystemParam), /// consider using [`SystemState`](crate::system::SystemState). /// /// To mutate different parts of the world simultaneously, /// use [`World::resource_scope`] or [`SystemState`](crate::system::SystemState). /// /// ## Resources /// /// Worlds can also store [`Resource`]s, /// which are unique instances of a given type that don't belong to a specific Entity. /// There are also *non send resources*, which can only be accessed on the main thread. /// See [`Resource`] for usage. pub struct World { id: WorldId, pub(crate) entities: Entities, pub(crate) components: Components, pub(crate) archetypes: Archetypes, pub(crate) storages: Storages, pub(crate) bundles: Bundles, pub(crate) removed_components: RemovedComponentEvents, /// Access cache used by [`WorldCell`]. Is only accessed in the `Drop` impl of `WorldCell`. pub(crate) archetype_component_access: ArchetypeComponentAccess, pub(crate) change_tick: AtomicU32, pub(crate) last_change_tick: Tick, pub(crate) last_check_tick: Tick, } impl Default for World { fn default() -> Self { Self { id: WorldId::new().expect("More `bevy` `World`s have been created than is supported"), entities: Entities::new(), components: Default::default(), archetypes: Archetypes::new(), storages: Default::default(), bundles: Default::default(), removed_components: Default::default(), archetype_component_access: Default::default(), // Default value is `1`, and `last_change_tick`s default to `0`, such that changes // are detected on first system runs and for direct world queries. change_tick: AtomicU32::new(1), last_change_tick: Tick::new(0), last_check_tick: Tick::new(0), } } } impl World { /// Creates a new empty [`World`]. /// /// # Panics /// /// If [`usize::MAX`] [`World`]s have been created. /// This guarantee allows System Parameters to safely uniquely identify a [`World`], /// since its [`WorldId`] is unique #[inline] pub fn new() -> World { World::default() } /// Retrieves this [`World`]'s unique ID #[inline] pub fn id(&self) -> WorldId { self.id } /// Creates a new [`UnsafeWorldCell`] view with complete read+write access. #[inline] pub fn as_unsafe_world_cell(&mut self) -> UnsafeWorldCell<'_> { UnsafeWorldCell::new_mutable(self) } /// Creates a new [`UnsafeWorldCell`] view with only read access to everything. #[inline] pub fn as_unsafe_world_cell_readonly(&self) -> UnsafeWorldCell<'_> { UnsafeWorldCell::new_readonly(self) } /// Retrieves this world's [`Entities`] collection. #[inline] pub fn entities(&self) -> &Entities { &self.entities } /// Retrieves this world's [`Entities`] collection mutably. /// /// # Safety /// Mutable reference must not be used to put the [`Entities`] data /// in an invalid state for this [`World`] #[inline] pub unsafe fn entities_mut(&mut self) -> &mut Entities { &mut self.entities } /// Retrieves this world's [`Archetypes`] collection. #[inline] pub fn archetypes(&self) -> &Archetypes { &self.archetypes } /// Retrieves this world's [`Components`] collection. #[inline] pub fn components(&self) -> &Components { &self.components } /// Retrieves this world's [`Storages`] collection. #[inline] pub fn storages(&self) -> &Storages { &self.storages } /// Retrieves this world's [`Bundles`] collection. #[inline] pub fn bundles(&self) -> &Bundles { &self.bundles } /// Retrieves this world's [`RemovedComponentEvents`] collection #[inline] pub fn removed_components(&self) -> &RemovedComponentEvents { &self.removed_components } /// Retrieves a [`WorldCell`], which safely enables multiple mutable World accesses at the same /// time, provided those accesses do not conflict with each other. #[inline] pub fn cell(&mut self) -> WorldCell<'_> { WorldCell::new(self) } /// Initializes a new [`Component`] type and returns the [`ComponentId`] created for it. pub fn init_component(&mut self) -> ComponentId { self.components.init_component::(&mut self.storages) } /// Initializes a new [`Component`] type and returns the [`ComponentId`] created for it. /// /// This method differs from [`World::init_component`] in that it uses a [`ComponentDescriptor`] /// to initialize the new component type instead of statically available type information. This /// enables the dynamic initialization of new component definitions at runtime for advanced use cases. /// /// While the option to initialize a component from a descriptor is useful in type-erased /// contexts, the standard `World::init_component` function should always be used instead /// when type information is available at compile time. pub fn init_component_with_descriptor( &mut self, descriptor: ComponentDescriptor, ) -> ComponentId { self.components .init_component_with_descriptor(&mut self.storages, descriptor) } /// Returns the [`ComponentId`] of the given [`Component`] type `T`. /// /// The returned `ComponentId` is specific to the `World` instance /// it was retrieved from and should not be used with another `World` instance. /// /// Returns [`None`] if the `Component` type has not yet been initialized within /// the `World` using [`World::init_component`]. /// /// ```rust /// use bevy_ecs::prelude::*; /// /// let mut world = World::new(); /// /// #[derive(Component)] /// struct ComponentA; /// /// let component_a_id = world.init_component::(); /// /// assert_eq!(component_a_id, world.component_id::().unwrap()) /// ``` /// /// # See also /// /// * [`Components::component_id()`] /// * [`Components::get_id()`] #[inline] pub fn component_id(&self) -> Option { self.components.component_id::() } /// Retrieves an [`EntityRef`] that exposes read-only operations for the given `entity`. /// This will panic if the `entity` does not exist. Use [`World::get_entity`] if you want /// to check for entity existence instead of implicitly panic-ing. /// /// ``` /// use bevy_ecs::{component::Component, world::World}; /// /// #[derive(Component)] /// struct Position { /// x: f32, /// y: f32, /// } /// /// let mut world = World::new(); /// let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id(); /// let position = world.entity(entity).get::().unwrap(); /// assert_eq!(position.x, 0.0); /// ``` #[inline] #[track_caller] pub fn entity(&self, entity: Entity) -> EntityRef { #[inline(never)] #[cold] #[track_caller] fn panic_no_entity(entity: Entity) -> ! { panic!("Entity {entity:?} does not exist"); } match self.get_entity(entity) { Some(entity) => entity, None => panic_no_entity(entity), } } /// Retrieves an [`EntityWorldMut`] that exposes read and write operations for the given `entity`. /// This will panic if the `entity` does not exist. Use [`World::get_entity_mut`] if you want /// to check for entity existence instead of implicitly panic-ing. /// /// ``` /// use bevy_ecs::{component::Component, world::World}; /// /// #[derive(Component)] /// struct Position { /// x: f32, /// y: f32, /// } /// /// let mut world = World::new(); /// let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id(); /// let mut entity_mut = world.entity_mut(entity); /// let mut position = entity_mut.get_mut::().unwrap(); /// position.x = 1.0; /// ``` #[inline] #[track_caller] pub fn entity_mut(&mut self, entity: Entity) -> EntityWorldMut { #[inline(never)] #[cold] #[track_caller] fn panic_no_entity(entity: Entity) -> ! { panic!("Entity {entity:?} does not exist"); } match self.get_entity_mut(entity) { Some(entity) => entity, None => panic_no_entity(entity), } } /// Gets an [`EntityRef`] for multiple entities at once. /// /// # Panics /// /// If any entity does not exist in the world. /// /// # Examples /// /// ``` /// # use bevy_ecs::prelude::*; /// # let mut world = World::new(); /// # let id1 = world.spawn_empty().id(); /// # let id2 = world.spawn_empty().id(); /// // Getting multiple entities. /// let [entity1, entity2] = world.many_entities([id1, id2]); /// ``` /// /// ```should_panic /// # use bevy_ecs::prelude::*; /// # let mut world = World::new(); /// # let id1 = world.spawn_empty().id(); /// # let id2 = world.spawn_empty().id(); /// // Trying to get a despawned entity will fail. /// world.despawn(id2); /// world.many_entities([id1, id2]); /// ``` pub fn many_entities(&mut self, entities: [Entity; N]) -> [EntityRef<'_>; N] { #[inline(never)] #[cold] #[track_caller] fn panic_no_entity(entity: Entity) -> ! { panic!("Entity {entity:?} does not exist"); } match self.get_many_entities(entities) { Ok(refs) => refs, Err(entity) => panic_no_entity(entity), } } /// Gets mutable access to multiple entities at once. /// /// # Panics /// /// If any entities do not exist in the world, /// or if the same entity is specified multiple times. /// /// # Examples /// /// Disjoint mutable access. /// /// ``` /// # use bevy_ecs::prelude::*; /// # let mut world = World::new(); /// # let id1 = world.spawn_empty().id(); /// # let id2 = world.spawn_empty().id(); /// // Disjoint mutable access. /// let [entity1, entity2] = world.many_entities_mut([id1, id2]); /// ``` /// /// Trying to access the same entity multiple times will fail. /// /// ```should_panic /// # use bevy_ecs::prelude::*; /// # let mut world = World::new(); /// # let id = world.spawn_empty().id(); /// world.many_entities_mut([id, id]); /// ``` pub fn many_entities_mut( &mut self, entities: [Entity; N], ) -> [EntityMut<'_>; N] { #[inline(never)] #[cold] #[track_caller] fn panic_on_err(e: QueryEntityError) -> ! { panic!("{e}"); } match self.get_many_entities_mut(entities) { Ok(borrows) => borrows, Err(e) => panic_on_err(e), } } /// Returns the components of an [`Entity`] through [`ComponentInfo`]. #[inline] pub fn inspect_entity(&self, entity: Entity) -> Vec<&ComponentInfo> { let entity_location = self .entities() .get(entity) .unwrap_or_else(|| panic!("Entity {entity:?} does not exist")); let archetype = self .archetypes() .get(entity_location.archetype_id) .unwrap_or_else(|| { panic!( "Archetype {:?} does not exist", entity_location.archetype_id ) }); archetype .components() .filter_map(|id| self.components().get_info(id)) .collect() } /// Returns an [`EntityWorldMut`] for the given `entity` (if it exists) or spawns one if it doesn't exist. /// This will return [`None`] if the `entity` exists with a different generation. /// /// # Note /// Spawning a specific `entity` value is rarely the right choice. Most apps should favor [`World::spawn`]. /// This method should generally only be used for sharing entities across apps, and only when they have a /// scheme worked out to share an ID space (which doesn't happen by default). #[inline] pub fn get_or_spawn(&mut self, entity: Entity) -> Option { self.flush(); match self.entities.alloc_at_without_replacement(entity) { AllocAtWithoutReplacement::Exists(location) => { // SAFETY: `entity` exists and `location` is that entity's location Some(unsafe { EntityWorldMut::new(self, entity, location) }) } AllocAtWithoutReplacement::DidNotExist => { // SAFETY: entity was just allocated Some(unsafe { self.spawn_at_empty_internal(entity) }) } AllocAtWithoutReplacement::ExistsWithWrongGeneration => None, } } /// Retrieves an [`EntityRef`] that exposes read-only operations for the given `entity`. /// Returns [`None`] if the `entity` does not exist. /// Instead of unwrapping the value returned from this function, prefer [`World::entity`]. /// /// ``` /// use bevy_ecs::{component::Component, world::World}; /// /// #[derive(Component)] /// struct Position { /// x: f32, /// y: f32, /// } /// /// let mut world = World::new(); /// let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id(); /// let entity_ref = world.get_entity(entity).unwrap(); /// let position = entity_ref.get::().unwrap(); /// assert_eq!(position.x, 0.0); /// ``` #[inline] pub fn get_entity(&self, entity: Entity) -> Option { let location = self.entities.get(entity)?; // SAFETY: if the Entity is invalid, the function returns early. // Additionally, Entities::get(entity) returns the correct EntityLocation if the entity exists. let entity_cell = UnsafeEntityCell::new(self.as_unsafe_world_cell_readonly(), entity, location); // SAFETY: The UnsafeEntityCell has read access to the entire world. let entity_ref = unsafe { EntityRef::new(entity_cell) }; Some(entity_ref) } /// Gets an [`EntityRef`] for multiple entities at once. /// /// # Errors /// /// If any entity does not exist in the world. /// /// # Examples /// /// ``` /// # use bevy_ecs::prelude::*; /// # let mut world = World::new(); /// # let id1 = world.spawn_empty().id(); /// # let id2 = world.spawn_empty().id(); /// // Getting multiple entities. /// let [entity1, entity2] = world.get_many_entities([id1, id2]).unwrap(); /// /// // Trying to get a despawned entity will fail. /// world.despawn(id2); /// assert!(world.get_many_entities([id1, id2]).is_err()); /// ``` pub fn get_many_entities( &self, entities: [Entity; N], ) -> Result<[EntityRef<'_>; N], Entity> { let mut refs = [MaybeUninit::uninit(); N]; for (r, id) in std::iter::zip(&mut refs, entities) { *r = MaybeUninit::new(self.get_entity(id).ok_or(id)?); } // SAFETY: Each item was initialized in the above loop. let refs = refs.map(|r| unsafe { MaybeUninit::assume_init(r) }); Ok(refs) } /// Returns an [`Entity`] iterator of current entities. /// /// This is useful in contexts where you only have read-only access to the [`World`]. #[inline] pub fn iter_entities(&self) -> impl Iterator> + '_ { self.archetypes.iter().flat_map(|archetype| { archetype .entities() .iter() .enumerate() .map(|(archetype_row, archetype_entity)| { let entity = archetype_entity.entity(); let location = EntityLocation { archetype_id: archetype.id(), archetype_row: ArchetypeRow::new(archetype_row), table_id: archetype.table_id(), table_row: archetype_entity.table_row(), }; // SAFETY: entity exists and location accurately specifies the archetype where the entity is stored. let cell = UnsafeEntityCell::new( self.as_unsafe_world_cell_readonly(), entity, location, ); // SAFETY: `&self` gives read access to the entire world. unsafe { EntityRef::new(cell) } }) }) } /// Returns a mutable iterator over all entities in the `World`. pub fn iter_entities_mut(&mut self) -> impl Iterator> + '_ { let world_cell = self.as_unsafe_world_cell(); world_cell.archetypes().iter().flat_map(move |archetype| { archetype .entities() .iter() .enumerate() .map(move |(archetype_row, archetype_entity)| { let entity = archetype_entity.entity(); let location = EntityLocation { archetype_id: archetype.id(), archetype_row: ArchetypeRow::new(archetype_row), table_id: archetype.table_id(), table_row: archetype_entity.table_row(), }; // SAFETY: entity exists and location accurately specifies the archetype where the entity is stored. let cell = UnsafeEntityCell::new(world_cell, entity, location); // SAFETY: We have exclusive access to the entire world. We only create one borrow for each entity, // so none will conflict with one another. unsafe { EntityMut::new(cell) } }) }) } /// Retrieves an [`EntityWorldMut`] that exposes read and write operations for the given `entity`. /// Returns [`None`] if the `entity` does not exist. /// Instead of unwrapping the value returned from this function, prefer [`World::entity_mut`]. /// /// ``` /// use bevy_ecs::{component::Component, world::World}; /// /// #[derive(Component)] /// struct Position { /// x: f32, /// y: f32, /// } /// /// let mut world = World::new(); /// let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id(); /// let mut entity_mut = world.get_entity_mut(entity).unwrap(); /// let mut position = entity_mut.get_mut::().unwrap(); /// position.x = 1.0; /// ``` #[inline] pub fn get_entity_mut(&mut self, entity: Entity) -> Option { let location = self.entities.get(entity)?; // SAFETY: `entity` exists and `location` is that entity's location Some(unsafe { EntityWorldMut::new(self, entity, location) }) } /// Gets mutable access to multiple entities. /// /// # Errors /// /// If any entities do not exist in the world, /// or if the same entity is specified multiple times. /// /// # Examples /// /// ``` /// # use bevy_ecs::prelude::*; /// # let mut world = World::new(); /// # let id1 = world.spawn_empty().id(); /// # let id2 = world.spawn_empty().id(); /// // Disjoint mutable access. /// let [entity1, entity2] = world.get_many_entities_mut([id1, id2]).unwrap(); /// /// // Trying to access the same entity multiple times will fail. /// assert!(world.get_many_entities_mut([id1, id1]).is_err()); /// ``` pub fn get_many_entities_mut( &mut self, entities: [Entity; N], ) -> Result<[EntityMut<'_>; N], QueryEntityError> { // Ensure each entity is unique. for i in 0..N { for j in 0..i { if entities[i] == entities[j] { return Err(QueryEntityError::AliasedMutability(entities[i])); } } } // SAFETY: Each entity is unique. unsafe { self.get_entities_mut_unchecked(entities) } } /// # Safety /// `entities` must contain no duplicate [`Entity`] IDs. unsafe fn get_entities_mut_unchecked( &mut self, entities: [Entity; N], ) -> Result<[EntityMut<'_>; N], QueryEntityError> { let world_cell = self.as_unsafe_world_cell(); let mut cells = [MaybeUninit::uninit(); N]; for (cell, id) in std::iter::zip(&mut cells, entities) { *cell = MaybeUninit::new( world_cell .get_entity(id) .ok_or(QueryEntityError::NoSuchEntity(id))?, ); } // SAFETY: Each item was initialized in the loop above. let cells = cells.map(|c| unsafe { MaybeUninit::assume_init(c) }); // SAFETY: // - `world_cell` has exclusive access to the entire world. // - The caller ensures that each entity is unique, so none // of the borrows will conflict with one another. let borrows = cells.map(|c| unsafe { EntityMut::new(c) }); Ok(borrows) } /// Spawns a new [`Entity`] and returns a corresponding [`EntityWorldMut`], which can be used /// to add components to the entity or retrieve its id. /// /// ``` /// use bevy_ecs::{component::Component, world::World}; /// /// #[derive(Component)] /// struct Position { /// x: f32, /// y: f32, /// } /// #[derive(Component)] /// struct Label(&'static str); /// #[derive(Component)] /// struct Num(u32); /// /// let mut world = World::new(); /// let entity = world.spawn_empty() /// .insert(Position { x: 0.0, y: 0.0 }) // add a single component /// .insert((Num(1), Label("hello"))) // add a bundle of components /// .id(); /// /// let position = world.entity(entity).get::().unwrap(); /// assert_eq!(position.x, 0.0); /// ``` pub fn spawn_empty(&mut self) -> EntityWorldMut { self.flush(); let entity = self.entities.alloc(); // SAFETY: entity was just allocated unsafe { self.spawn_at_empty_internal(entity) } } /// Spawns a new [`Entity`] with a given [`Bundle`] of [components](`Component`) and returns /// a corresponding [`EntityWorldMut`], which can be used to add components to the entity or /// retrieve its id. /// /// ``` /// use bevy_ecs::{bundle::Bundle, component::Component, world::World}; /// /// #[derive(Component)] /// struct Position { /// x: f32, /// y: f32, /// } /// /// #[derive(Component)] /// struct Velocity { /// x: f32, /// y: f32, /// }; /// /// #[derive(Component)] /// struct Name(&'static str); /// /// #[derive(Bundle)] /// struct PhysicsBundle { /// position: Position, /// velocity: Velocity, /// } /// /// let mut world = World::new(); /// /// // `spawn` can accept a single component: /// world.spawn(Position { x: 0.0, y: 0.0 }); /// // It can also accept a tuple of components: /// world.spawn(( /// Position { x: 0.0, y: 0.0 }, /// Velocity { x: 1.0, y: 1.0 }, /// )); /// // Or it can accept a pre-defined Bundle of components: /// world.spawn(PhysicsBundle { /// position: Position { x: 2.0, y: 2.0 }, /// velocity: Velocity { x: 0.0, y: 4.0 }, /// }); /// /// let entity = world /// // Tuples can also mix Bundles and Components /// .spawn(( /// PhysicsBundle { /// position: Position { x: 2.0, y: 2.0 }, /// velocity: Velocity { x: 0.0, y: 4.0 }, /// }, /// Name("Elaina Proctor"), /// )) /// // Calling id() will return the unique identifier for the spawned entity /// .id(); /// let position = world.entity(entity).get::().unwrap(); /// assert_eq!(position.x, 2.0); /// ``` pub fn spawn(&mut self, bundle: B) -> EntityWorldMut { self.flush(); let change_tick = self.change_tick(); let entity = self.entities.alloc(); let entity_location = { let bundle_info = self .bundles .init_info::(&mut self.components, &mut self.storages); let mut spawner = bundle_info.get_bundle_spawner( &mut self.entities, &mut self.archetypes, &self.components, &mut self.storages, change_tick, ); // SAFETY: bundle's type matches `bundle_info`, entity is allocated but non-existent unsafe { spawner.spawn_non_existent(entity, bundle) } }; // SAFETY: entity and location are valid, as they were just created above unsafe { EntityWorldMut::new(self, entity, entity_location) } } /// # Safety /// must be called on an entity that was just allocated unsafe fn spawn_at_empty_internal(&mut self, entity: Entity) -> EntityWorldMut { let archetype = self.archetypes.empty_mut(); // PERF: consider avoiding allocating entities in the empty archetype unless needed let table_row = self.storages.tables[archetype.table_id()].allocate(entity); // SAFETY: no components are allocated by archetype.allocate() because the archetype is // empty let location = archetype.allocate(entity, table_row); // SAFETY: entity index was just allocated self.entities.set(entity.index(), location); EntityWorldMut::new(self, entity, location) } /// Spawns a batch of entities with the same component [`Bundle`] type. Takes a given /// [`Bundle`] iterator and returns a corresponding [`Entity`] iterator. /// This is more efficient than spawning entities and adding components to them individually, /// but it is limited to spawning entities with the same [`Bundle`] type, whereas spawning /// individually is more flexible. /// /// ``` /// use bevy_ecs::{component::Component, entity::Entity, world::World}; /// /// #[derive(Component)] /// struct Str(&'static str); /// #[derive(Component)] /// struct Num(u32); /// /// let mut world = World::new(); /// let entities = world.spawn_batch(vec![ /// (Str("a"), Num(0)), // the first entity /// (Str("b"), Num(1)), // the second entity /// ]).collect::>(); /// /// assert_eq!(entities.len(), 2); /// ``` pub fn spawn_batch(&mut self, iter: I) -> SpawnBatchIter<'_, I::IntoIter> where I: IntoIterator, I::Item: Bundle, { SpawnBatchIter::new(self, iter.into_iter()) } /// Retrieves a reference to the given `entity`'s [`Component`] of the given type. /// Returns `None` if the `entity` does not have a [`Component`] of the given type. /// ``` /// use bevy_ecs::{component::Component, world::World}; /// /// #[derive(Component)] /// struct Position { /// x: f32, /// y: f32, /// } /// /// let mut world = World::new(); /// let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id(); /// let position = world.get::(entity).unwrap(); /// assert_eq!(position.x, 0.0); /// ``` #[inline] pub fn get(&self, entity: Entity) -> Option<&T> { self.get_entity(entity)?.get() } /// Retrieves a mutable reference to the given `entity`'s [`Component`] of the given type. /// Returns `None` if the `entity` does not have a [`Component`] of the given type. /// ``` /// use bevy_ecs::{component::Component, world::World}; /// /// #[derive(Component)] /// struct Position { /// x: f32, /// y: f32, /// } /// /// let mut world = World::new(); /// let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id(); /// let mut position = world.get_mut::(entity).unwrap(); /// position.x = 1.0; /// ``` #[inline] pub fn get_mut(&mut self, entity: Entity) -> Option> { // SAFETY: // - `as_unsafe_world_cell` is the only thing that is borrowing world // - `as_unsafe_world_cell` provides mutable permission to everything // - `&mut self` ensures no other borrows on world data unsafe { self.as_unsafe_world_cell().get_entity(entity)?.get_mut() } } /// Despawns the given `entity`, if it exists. This will also remove all of the entity's /// [`Component`]s. Returns `true` if the `entity` is successfully despawned and `false` if /// the `entity` does not exist. /// ``` /// use bevy_ecs::{component::Component, world::World}; /// /// #[derive(Component)] /// struct Position { /// x: f32, /// y: f32, /// } /// /// let mut world = World::new(); /// let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id(); /// assert!(world.despawn(entity)); /// assert!(world.get_entity(entity).is_none()); /// assert!(world.get::(entity).is_none()); /// ``` #[inline] pub fn despawn(&mut self, entity: Entity) -> bool { if let Some(entity) = self.get_entity_mut(entity) { entity.despawn(); true } else { warn!("error[B0003]: Could not despawn entity {:?} because it doesn't exist in this World.", entity); false } } /// Clears the internal component tracker state. /// /// The world maintains some internal state about changed and removed components. This state /// is used by [`RemovedComponents`] to provide access to the entities that had a specific type /// of component removed since last tick. /// /// The state is also used for change detection when accessing components and resources outside /// of a system, for example via [`World::get_mut()`] or [`World::get_resource_mut()`]. /// /// By clearing this internal state, the world "forgets" about those changes, allowing a new round /// of detection to be recorded. /// /// When using `bevy_ecs` as part of the full Bevy engine, this method is added as a system to the /// main app, to run during `Last`, so you don't need to call it manually. When using `bevy_ecs` /// as a separate standalone crate however, you need to call this manually. /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component, Default)] /// # struct Transform; /// // a whole new world /// let mut world = World::new(); /// /// // you changed it /// let entity = world.spawn(Transform::default()).id(); /// /// // change is detected /// let transform = world.get_mut::(entity).unwrap(); /// assert!(transform.is_changed()); /// /// // update the last change tick /// world.clear_trackers(); /// /// // change is no longer detected /// let transform = world.get_mut::(entity).unwrap(); /// assert!(!transform.is_changed()); /// ``` /// /// [`RemovedComponents`]: crate::removal_detection::RemovedComponents pub fn clear_trackers(&mut self) { self.removed_components.update(); self.last_change_tick = self.increment_change_tick(); } /// Returns [`QueryState`] for the given [`WorldQuery`], which is used to efficiently /// run queries on the [`World`] by storing and reusing the [`QueryState`]. /// ``` /// use bevy_ecs::{component::Component, entity::Entity, world::World}; /// /// #[derive(Component, Debug, PartialEq)] /// struct Position { /// x: f32, /// y: f32, /// } /// /// #[derive(Component)] /// struct Velocity { /// x: f32, /// y: f32, /// } /// /// let mut world = World::new(); /// let entities = world.spawn_batch(vec![ /// (Position { x: 0.0, y: 0.0}, Velocity { x: 1.0, y: 0.0 }), /// (Position { x: 0.0, y: 0.0}, Velocity { x: 0.0, y: 1.0 }), /// ]).collect::>(); /// /// let mut query = world.query::<(&mut Position, &Velocity)>(); /// for (mut position, velocity) in query.iter_mut(&mut world) { /// position.x += velocity.x; /// position.y += velocity.y; /// } /// /// assert_eq!(world.get::(entities[0]).unwrap(), &Position { x: 1.0, y: 0.0 }); /// assert_eq!(world.get::(entities[1]).unwrap(), &Position { x: 0.0, y: 1.0 }); /// ``` /// /// To iterate over entities in a deterministic order, /// sort the results of the query using the desired component as a key. /// Note that this requires fetching the whole result set from the query /// and allocation of a [`Vec`] to store it. /// /// ``` /// use bevy_ecs::{component::Component, entity::Entity, world::World}; /// /// #[derive(Component, PartialEq, Eq, PartialOrd, Ord, Debug)] /// struct Order(i32); /// #[derive(Component, PartialEq, Debug)] /// struct Label(&'static str); /// /// let mut world = World::new(); /// let a = world.spawn((Order(2), Label("second"))).id(); /// let b = world.spawn((Order(3), Label("third"))).id(); /// let c = world.spawn((Order(1), Label("first"))).id(); /// let mut entities = world.query::<(Entity, &Order, &Label)>() /// .iter(&world) /// .collect::>(); /// // Sort the query results by their `Order` component before comparing /// // to expected results. Query iteration order should not be relied on. /// entities.sort_by_key(|e| e.1); /// assert_eq!(entities, vec![ /// (c, &Order(1), &Label("first")), /// (a, &Order(2), &Label("second")), /// (b, &Order(3), &Label("third")), /// ]); /// ``` #[inline] pub fn query(&mut self) -> QueryState { self.query_filtered::() } /// Returns [`QueryState`] for the given filtered [`WorldQuery`], which is used to efficiently /// run queries on the [`World`] by storing and reusing the [`QueryState`]. /// ``` /// use bevy_ecs::{component::Component, entity::Entity, world::World, query::With}; /// /// #[derive(Component)] /// struct A; /// #[derive(Component)] /// struct B; /// /// let mut world = World::new(); /// let e1 = world.spawn(A).id(); /// let e2 = world.spawn((A, B)).id(); /// /// let mut query = world.query_filtered::>(); /// let matching_entities = query.iter(&world).collect::>(); /// /// assert_eq!(matching_entities, vec![e2]); /// ``` #[inline] pub fn query_filtered(&mut self) -> QueryState { QueryState::new(self) } /// Returns an iterator of entities that had components of type `T` removed /// since the last call to [`World::clear_trackers`]. pub fn removed(&self) -> impl Iterator + '_ { self.components .get_id(TypeId::of::()) .map(|component_id| self.removed_with_id(component_id)) .into_iter() .flatten() } /// Returns an iterator of entities that had components with the given `component_id` removed /// since the last call to [`World::clear_trackers`]. pub fn removed_with_id(&self, component_id: ComponentId) -> impl Iterator + '_ { self.removed_components .get(component_id) .map(|removed| removed.iter_current_update_events().cloned()) .into_iter() .flatten() .map(|e| e.into()) } /// Initializes a new resource and returns the [`ComponentId`] created for it. /// /// If the resource already exists, nothing happens. /// /// The value given by the [`FromWorld::from_world`] method will be used. /// Note that any resource with the [`Default`] trait automatically implements [`FromWorld`], /// and those default values will be here instead. #[inline] pub fn init_resource(&mut self) -> ComponentId { let component_id = self.components.init_resource::(); if self .storages .resources .get(component_id) .map_or(true, |data| !data.is_present()) { let value = R::from_world(self); OwningPtr::make(value, |ptr| { // SAFETY: component_id was just initialized and corresponds to resource of type R. unsafe { self.insert_resource_by_id(component_id, ptr); } }); } component_id } /// Inserts a new resource with the given `value`. /// /// Resources are "unique" data of a given type. /// If you insert a resource of a type that already exists, /// you will overwrite any existing data. #[inline] pub fn insert_resource(&mut self, value: R) { let component_id = self.components.init_resource::(); OwningPtr::make(value, |ptr| { // SAFETY: component_id was just initialized and corresponds to resource of type R. unsafe { self.insert_resource_by_id(component_id, ptr); } }); } /// Initializes a new non-send resource and returns the [`ComponentId`] created for it. /// /// If the resource already exists, nothing happens. /// /// The value given by the [`FromWorld::from_world`] method will be used. /// Note that any resource with the `Default` trait automatically implements `FromWorld`, /// and those default values will be here instead. /// /// # Panics /// /// Panics if called from a thread other than the main thread. #[inline] pub fn init_non_send_resource(&mut self) -> ComponentId { let component_id = self.components.init_non_send::(); if self .storages .non_send_resources .get(component_id) .map_or(true, |data| !data.is_present()) { let value = R::from_world(self); OwningPtr::make(value, |ptr| { // SAFETY: component_id was just initialized and corresponds to resource of type R. unsafe { self.insert_non_send_by_id(component_id, ptr); } }); } component_id } /// Inserts a new non-send resource with the given `value`. /// /// `NonSend` resources cannot be sent across threads, /// and do not need the `Send + Sync` bounds. /// Systems with `NonSend` resources are always scheduled on the main thread. /// /// # Panics /// If a value is already present, this function will panic if called /// from a different thread than where the original value was inserted from. #[inline] pub fn insert_non_send_resource(&mut self, value: R) { let component_id = self.components.init_non_send::(); OwningPtr::make(value, |ptr| { // SAFETY: component_id was just initialized and corresponds to resource of type R. unsafe { self.insert_non_send_by_id(component_id, ptr); } }); } /// Removes the resource of a given type and returns it, if it exists. Otherwise returns `None`. #[inline] pub fn remove_resource(&mut self) -> Option { let component_id = self.components.get_resource_id(TypeId::of::())?; let (ptr, _) = self.storages.resources.get_mut(component_id)?.remove()?; // SAFETY: `component_id` was gotten via looking up the `R` type unsafe { Some(ptr.read::()) } } /// Removes a `!Send` resource from the world and returns it, if present. /// /// `NonSend` resources cannot be sent across threads, /// and do not need the `Send + Sync` bounds. /// Systems with `NonSend` resources are always scheduled on the main thread. /// /// Returns `None` if a value was not previously present. /// /// # Panics /// If a value is present, this function will panic if called from a different /// thread than where the value was inserted from. #[inline] pub fn remove_non_send_resource(&mut self) -> Option { let component_id = self.components.get_resource_id(TypeId::of::())?; let (ptr, _) = self .storages .non_send_resources .get_mut(component_id)? .remove()?; // SAFETY: `component_id` was gotten via looking up the `R` type unsafe { Some(ptr.read::()) } } /// Returns `true` if a resource of type `R` exists. Otherwise returns `false`. #[inline] pub fn contains_resource(&self) -> bool { self.components .get_resource_id(TypeId::of::()) .and_then(|component_id| self.storages.resources.get(component_id)) .map(|info| info.is_present()) .unwrap_or(false) } /// Returns `true` if a resource of type `R` exists. Otherwise returns `false`. #[inline] pub fn contains_non_send(&self) -> bool { self.components .get_resource_id(TypeId::of::()) .and_then(|component_id| self.storages.non_send_resources.get(component_id)) .map(|info| info.is_present()) .unwrap_or(false) } /// Return's `true` if a resource of type `R` exists and was added since the world's /// [`last_change_tick`](World::last_change_tick()). Otherwise, this return's `false`. /// /// This means that: /// - When called from an exclusive system, this will check for additions since the system last ran. /// - When called elsewhere, this will check for additions since the last time that [`World::clear_trackers`] /// was called. pub fn is_resource_added(&self) -> bool { self.components .get_resource_id(TypeId::of::()) .and_then(|component_id| self.storages.resources.get(component_id)?.get_ticks()) .map(|ticks| ticks.is_added(self.last_change_tick(), self.read_change_tick())) .unwrap_or(false) } /// Return's `true` if a resource of type `R` exists and was modified since the world's /// [`last_change_tick`](World::last_change_tick()). Otherwise, this return's `false`. /// /// This means that: /// - When called from an exclusive system, this will check for changes since the system last ran. /// - When called elsewhere, this will check for changes since the last time that [`World::clear_trackers`] /// was called. pub fn is_resource_changed(&self) -> bool { self.components .get_resource_id(TypeId::of::()) .and_then(|component_id| self.storages.resources.get(component_id)?.get_ticks()) .map(|ticks| ticks.is_changed(self.last_change_tick(), self.read_change_tick())) .unwrap_or(false) } /// Gets a reference to the resource of the given type /// /// # Panics /// /// Panics if the resource does not exist. /// Use [`get_resource`](World::get_resource) instead if you want to handle this case. /// /// If you want to instead insert a value if the resource does not exist, /// use [`get_resource_or_insert_with`](World::get_resource_or_insert_with). #[inline] #[track_caller] pub fn resource(&self) -> &R { match self.get_resource() { Some(x) => x, None => panic!( "Requested resource {} does not exist in the `World`. Did you forget to add it using `app.insert_resource` / `app.init_resource`? Resources are also implicitly added via `app.add_event`, and can be added by plugins.", std::any::type_name::() ), } } /// Gets a mutable reference to the resource of the given type /// /// # Panics /// /// Panics if the resource does not exist. /// Use [`get_resource_mut`](World::get_resource_mut) instead if you want to handle this case. /// /// If you want to instead insert a value if the resource does not exist, /// use [`get_resource_or_insert_with`](World::get_resource_or_insert_with). #[inline] #[track_caller] pub fn resource_mut(&mut self) -> Mut<'_, R> { match self.get_resource_mut() { Some(x) => x, None => panic!( "Requested resource {} does not exist in the `World`. Did you forget to add it using `app.insert_resource` / `app.init_resource`? Resources are also implicitly added via `app.add_event`, and can be added by plugins.", std::any::type_name::() ), } } /// Gets a reference to the resource of the given type if it exists #[inline] pub fn get_resource(&self) -> Option<&R> { // SAFETY: // - `as_unsafe_world_cell_readonly` gives permission to access everything immutably // - `&self` ensures nothing in world is borrowed immutably unsafe { self.as_unsafe_world_cell_readonly().get_resource() } } /// Gets a mutable reference to the resource of the given type if it exists #[inline] pub fn get_resource_mut(&mut self) -> Option> { // SAFETY: // - `as_unsafe_world_cell` gives permission to access everything mutably // - `&mut self` ensures nothing in world is borrowed unsafe { self.as_unsafe_world_cell().get_resource_mut() } } /// Gets a mutable reference to the resource of type `T` if it exists, /// otherwise inserts the resource using the result of calling `func`. #[inline] pub fn get_resource_or_insert_with( &mut self, func: impl FnOnce() -> R, ) -> Mut<'_, R> { let change_tick = self.change_tick(); let last_change_tick = self.last_change_tick(); let component_id = self.components.init_resource::(); let data = self.initialize_resource_internal(component_id); if !data.is_present() { OwningPtr::make(func(), |ptr| { // SAFETY: component_id was just initialized and corresponds to resource of type R. unsafe { data.insert(ptr, change_tick); } }); } // SAFETY: The resource must be present, as we would have inserted it if it was empty. let data = unsafe { data.get_mut(last_change_tick, change_tick) .debug_checked_unwrap() }; // SAFETY: The underlying type of the resource is `R`. unsafe { data.with_type::() } } /// Gets an immutable reference to the non-send resource of the given type, if it exists. /// /// # Panics /// /// Panics if the resource does not exist. /// Use [`get_non_send_resource`](World::get_non_send_resource) instead if you want to handle this case. /// /// This function will panic if it isn't called from the same thread that the resource was inserted from. #[inline] #[track_caller] pub fn non_send_resource(&self) -> &R { match self.get_non_send_resource() { Some(x) => x, None => panic!( "Requested non-send resource {} does not exist in the `World`. Did you forget to add it using `app.insert_non_send_resource` / `app.init_non_send_resource`? Non-send resources can also be be added by plugins.", std::any::type_name::() ), } } /// Gets a mutable reference to the non-send resource of the given type, if it exists. /// /// # Panics /// /// Panics if the resource does not exist. /// Use [`get_non_send_resource_mut`](World::get_non_send_resource_mut) instead if you want to handle this case. /// /// This function will panic if it isn't called from the same thread that the resource was inserted from. #[inline] #[track_caller] pub fn non_send_resource_mut(&mut self) -> Mut<'_, R> { match self.get_non_send_resource_mut() { Some(x) => x, None => panic!( "Requested non-send resource {} does not exist in the `World`. Did you forget to add it using `app.insert_non_send_resource` / `app.init_non_send_resource`? Non-send resources can also be be added by plugins.", std::any::type_name::() ), } } /// Gets a reference to the non-send resource of the given type, if it exists. /// Otherwise returns `None`. /// /// # Panics /// This function will panic if it isn't called from the same thread that the resource was inserted from. #[inline] pub fn get_non_send_resource(&self) -> Option<&R> { // SAFETY: // - `as_unsafe_world_cell_readonly` gives permission to access the entire world immutably // - `&self` ensures that there are no mutable borrows of world data unsafe { self.as_unsafe_world_cell_readonly().get_non_send_resource() } } /// Gets a mutable reference to the non-send resource of the given type, if it exists. /// Otherwise returns `None`. /// /// # Panics /// This function will panic if it isn't called from the same thread that the resource was inserted from. #[inline] pub fn get_non_send_resource_mut(&mut self) -> Option> { // SAFETY: // - `as_unsafe_world_cell` gives permission to access the entire world mutably // - `&mut self` ensures that there are no borrows of world data unsafe { self.as_unsafe_world_cell().get_non_send_resource_mut() } } // Shorthand helper function for getting the [`ArchetypeComponentId`] for a resource. #[inline] pub(crate) fn get_resource_archetype_component_id( &self, component_id: ComponentId, ) -> Option { let resource = self.storages.resources.get(component_id)?; Some(resource.id()) } // Shorthand helper function for getting the [`ArchetypeComponentId`] for a resource. #[inline] pub(crate) fn get_non_send_archetype_component_id( &self, component_id: ComponentId, ) -> Option { let resource = self.storages.non_send_resources.get(component_id)?; Some(resource.id()) } /// For a given batch of ([`Entity`], [`Bundle`]) pairs, either spawns each [`Entity`] with the given /// bundle (if the entity does not exist), or inserts the [`Bundle`] (if the entity already exists). /// This is faster than doing equivalent operations one-by-one. /// Returns `Ok` if all entities were successfully inserted into or spawned. Otherwise it returns an `Err` /// with a list of entities that could not be spawned or inserted into. A "spawn or insert" operation can /// only fail if an [`Entity`] is passed in with an "invalid generation" that conflicts with an existing [`Entity`]. /// /// # Note /// Spawning a specific `entity` value is rarely the right choice. Most apps should use [`World::spawn_batch`]. /// This method should generally only be used for sharing entities across apps, and only when they have a scheme /// worked out to share an ID space (which doesn't happen by default). /// /// ``` /// use bevy_ecs::{entity::Entity, world::World, component::Component}; /// #[derive(Component)] /// struct A(&'static str); /// #[derive(Component, PartialEq, Debug)] /// struct B(f32); /// /// let mut world = World::new(); /// let e0 = world.spawn_empty().id(); /// let e1 = world.spawn_empty().id(); /// world.insert_or_spawn_batch(vec![ /// (e0, (A("a"), B(0.0))), // the first entity /// (e1, (A("b"), B(1.0))), // the second entity /// ]); /// /// assert_eq!(world.get::(e0), Some(&B(0.0))); /// ``` pub fn insert_or_spawn_batch(&mut self, iter: I) -> Result<(), Vec> where I: IntoIterator, I::IntoIter: Iterator, B: Bundle, { self.flush(); let change_tick = self.change_tick(); let bundle_info = self .bundles .init_info::(&mut self.components, &mut self.storages); enum SpawnOrInsert<'a, 'b> { Spawn(BundleSpawner<'a, 'b>), Insert(BundleInserter<'a, 'b>, ArchetypeId), } impl<'a, 'b> SpawnOrInsert<'a, 'b> { fn entities(&mut self) -> &mut Entities { match self { SpawnOrInsert::Spawn(spawner) => spawner.entities, SpawnOrInsert::Insert(inserter, _) => inserter.entities, } } } let mut spawn_or_insert = SpawnOrInsert::Spawn(bundle_info.get_bundle_spawner( &mut self.entities, &mut self.archetypes, &self.components, &mut self.storages, change_tick, )); let mut invalid_entities = Vec::new(); for (entity, bundle) in iter { match spawn_or_insert .entities() .alloc_at_without_replacement(entity) { AllocAtWithoutReplacement::Exists(location) => { match spawn_or_insert { SpawnOrInsert::Insert(ref mut inserter, archetype) if location.archetype_id == archetype => { // SAFETY: `entity` is valid, `location` matches entity, bundle matches inserter unsafe { inserter.insert(entity, location, bundle) }; } _ => { let mut inserter = bundle_info.get_bundle_inserter( &mut self.entities, &mut self.archetypes, &self.components, &mut self.storages, location.archetype_id, change_tick, ); // SAFETY: `entity` is valid, `location` matches entity, bundle matches inserter unsafe { inserter.insert(entity, location, bundle) }; spawn_or_insert = SpawnOrInsert::Insert(inserter, location.archetype_id); } }; } AllocAtWithoutReplacement::DidNotExist => { if let SpawnOrInsert::Spawn(ref mut spawner) = spawn_or_insert { // SAFETY: `entity` is allocated (but non existent), bundle matches inserter unsafe { spawner.spawn_non_existent(entity, bundle) }; } else { let mut spawner = bundle_info.get_bundle_spawner( &mut self.entities, &mut self.archetypes, &self.components, &mut self.storages, change_tick, ); // SAFETY: `entity` is valid, `location` matches entity, bundle matches inserter unsafe { spawner.spawn_non_existent(entity, bundle) }; spawn_or_insert = SpawnOrInsert::Spawn(spawner); } } AllocAtWithoutReplacement::ExistsWithWrongGeneration => { invalid_entities.push(entity); } } } if invalid_entities.is_empty() { Ok(()) } else { Err(invalid_entities) } } /// Temporarily removes the requested resource from this [`World`], runs custom user code, /// then re-adds the resource before returning. /// /// This enables safe simultaneous mutable access to both a resource and the rest of the [`World`]. /// For more complex access patterns, consider using [`SystemState`](crate::system::SystemState). /// /// # Example /// ``` /// use bevy_ecs::prelude::*; /// #[derive(Resource)] /// struct A(u32); /// #[derive(Component)] /// struct B(u32); /// let mut world = World::new(); /// world.insert_resource(A(1)); /// let entity = world.spawn(B(1)).id(); /// /// world.resource_scope(|world, mut a: Mut| { /// let b = world.get_mut::(entity).unwrap(); /// a.0 += b.0; /// }); /// assert_eq!(world.get_resource::().unwrap().0, 2); /// ``` pub fn resource_scope(&mut self, f: impl FnOnce(&mut World, Mut) -> U) -> U { let last_change_tick = self.last_change_tick(); let change_tick = self.change_tick(); let component_id = self .components .get_resource_id(TypeId::of::()) .unwrap_or_else(|| panic!("resource does not exist: {}", std::any::type_name::())); let (ptr, mut ticks) = self .storages .resources .get_mut(component_id) .and_then(|info| info.remove()) .unwrap_or_else(|| panic!("resource does not exist: {}", std::any::type_name::())); // Read the value onto the stack to avoid potential mut aliasing. // SAFETY: `ptr` was obtained from the TypeId of `R`. let mut value = unsafe { ptr.read::() }; let value_mut = Mut { value: &mut value, ticks: TicksMut { added: &mut ticks.added, changed: &mut ticks.changed, last_run: last_change_tick, this_run: change_tick, }, }; let result = f(self, value_mut); assert!(!self.contains_resource::(), "Resource `{}` was inserted during a call to World::resource_scope.\n\ This is not allowed as the original resource is reinserted to the world after the closure is invoked.", std::any::type_name::()); OwningPtr::make(value, |ptr| { // SAFETY: pointer is of type R unsafe { self.storages .resources .get_mut(component_id) .map(|info| info.insert_with_ticks(ptr, ticks)) .unwrap_or_else(|| { panic!( "No resource of type {} exists in the World.", std::any::type_name::() ) }); } }); result } /// Sends an [`Event`]. /// This method returns the [ID](`EventId`) of the sent `event`, /// or [`None`] if the `event` could not be sent. #[inline] pub fn send_event(&mut self, event: E) -> Option> { self.send_event_batch(std::iter::once(event))?.next() } /// Sends the default value of the [`Event`] of type `E`. /// This method returns the [ID](`EventId`) of the sent `event`, /// or [`None`] if the `event` could not be sent. #[inline] pub fn send_event_default(&mut self) -> Option> { self.send_event(E::default()) } /// Sends a batch of [`Event`]s from an iterator. /// This method returns the [IDs](`EventId`) of the sent `events`, /// or [`None`] if the `event` could not be sent. #[inline] pub fn send_event_batch( &mut self, events: impl IntoIterator, ) -> Option> { let Some(mut events_resource) = self.get_resource_mut::>() else { bevy_utils::tracing::error!( "Unable to send event `{}`\n\tEvent must be added to the app with `add_event()`\n\thttps://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event ", std::any::type_name::() ); return None; }; Some(events_resource.send_batch(events)) } /// Inserts a new resource with the given `value`. Will replace the value if it already existed. /// /// **You should prefer to use the typed API [`World::insert_resource`] where possible and only /// use this in cases where the actual types are not known at compile time.** /// /// # Safety /// The value referenced by `value` must be valid for the given [`ComponentId`] of this world. #[inline] pub unsafe fn insert_resource_by_id( &mut self, component_id: ComponentId, value: OwningPtr<'_>, ) { let change_tick = self.change_tick(); // SAFETY: value is valid for component_id, ensured by caller self.initialize_resource_internal(component_id) .insert(value, change_tick); } /// Inserts a new `!Send` resource with the given `value`. Will replace the value if it already /// existed. /// /// **You should prefer to use the typed API [`World::insert_non_send_resource`] where possible and only /// use this in cases where the actual types are not known at compile time.** /// /// # Panics /// If a value is already present, this function will panic if not called from the same /// thread that the original value was inserted from. /// /// # Safety /// The value referenced by `value` must be valid for the given [`ComponentId`] of this world. #[inline] pub unsafe fn insert_non_send_by_id( &mut self, component_id: ComponentId, value: OwningPtr<'_>, ) { let change_tick = self.change_tick(); // SAFETY: value is valid for component_id, ensured by caller self.initialize_non_send_internal(component_id) .insert(value, change_tick); } /// # Panics /// Panics if `component_id` is not registered as a `Send` component type in this `World` #[inline] fn initialize_resource_internal( &mut self, component_id: ComponentId, ) -> &mut ResourceData { let archetype_component_count = &mut self.archetypes.archetype_component_count; self.storages .resources .initialize_with(component_id, &self.components, || { let id = ArchetypeComponentId::new(*archetype_component_count); *archetype_component_count += 1; id }) } /// # Panics /// panics if `component_id` is not registered in this world #[inline] fn initialize_non_send_internal( &mut self, component_id: ComponentId, ) -> &mut ResourceData { let archetype_component_count = &mut self.archetypes.archetype_component_count; self.storages .non_send_resources .initialize_with(component_id, &self.components, || { let id = ArchetypeComponentId::new(*archetype_component_count); *archetype_component_count += 1; id }) } pub(crate) fn initialize_resource(&mut self) -> ComponentId { let component_id = self.components.init_resource::(); self.initialize_resource_internal(component_id); component_id } pub(crate) fn initialize_non_send_resource(&mut self) -> ComponentId { let component_id = self.components.init_non_send::(); self.initialize_non_send_internal(component_id); component_id } /// Empties queued entities and adds them to the empty [`Archetype`](crate::archetype::Archetype). /// This should be called before doing operations that might operate on queued entities, /// such as inserting a [`Component`]. pub(crate) fn flush(&mut self) { let empty_archetype = self.archetypes.empty_mut(); let table = &mut self.storages.tables[empty_archetype.table_id()]; // PERF: consider pre-allocating space for flushed entities // SAFETY: entity is set to a valid location unsafe { self.entities.flush(|entity, location| { // SAFETY: no components are allocated by archetype.allocate() because the archetype // is empty *location = empty_archetype.allocate(entity, table.allocate(entity)); }); } } /// Increments the world's current change tick and returns the old value. #[inline] pub fn increment_change_tick(&self) -> Tick { let prev_tick = self.change_tick.fetch_add(1, Ordering::AcqRel); Tick::new(prev_tick) } /// Reads the current change tick of this world. /// /// If you have exclusive (`&mut`) access to the world, consider using [`change_tick()`](Self::change_tick), /// which is more efficient since it does not require atomic synchronization. #[inline] pub fn read_change_tick(&self) -> Tick { let tick = self.change_tick.load(Ordering::Acquire); Tick::new(tick) } /// Reads the current change tick of this world. /// /// This does the same thing as [`read_change_tick()`](Self::read_change_tick), only this method /// is more efficient since it does not require atomic synchronization. #[inline] pub fn change_tick(&mut self) -> Tick { let tick = *self.change_tick.get_mut(); Tick::new(tick) } /// When called from within an exclusive system (a [`System`] that takes `&mut World` as its first /// parameter), this method returns the [`Tick`] indicating the last time the exclusive system was run. /// /// Otherwise, this returns the `Tick` indicating the last time that [`World::clear_trackers`] was called. /// /// [`System`]: crate::system::System #[inline] pub fn last_change_tick(&self) -> Tick { self.last_change_tick } /// Iterates all component change ticks and clamps any older than [`MAX_CHANGE_AGE`](crate::change_detection::MAX_CHANGE_AGE). /// This prevents overflow and thus prevents false positives. /// /// **Note:** Does nothing if the [`World`] counter has not been incremented at least [`CHECK_TICK_THRESHOLD`] /// times since the previous pass. // TODO: benchmark and optimize pub fn check_change_ticks(&mut self) { let change_tick = self.change_tick(); if change_tick.relative_to(self.last_check_tick).get() < CHECK_TICK_THRESHOLD { return; } let Storages { ref mut tables, ref mut sparse_sets, ref mut resources, ref mut non_send_resources, } = self.storages; #[cfg(feature = "trace")] let _span = bevy_utils::tracing::info_span!("check component ticks").entered(); tables.check_change_ticks(change_tick); sparse_sets.check_change_ticks(change_tick); resources.check_change_ticks(change_tick); non_send_resources.check_change_ticks(change_tick); if let Some(mut schedules) = self.get_resource_mut::() { schedules.check_change_ticks(change_tick); } self.last_check_tick = change_tick; } /// Runs both [`clear_entities`](Self::clear_entities) and [`clear_resources`](Self::clear_resources), /// invalidating all [`Entity`] and resource fetches such as [`Res`](crate::system::Res), [`ResMut`](crate::system::ResMut) pub fn clear_all(&mut self) { self.clear_entities(); self.clear_resources(); } /// Despawns all entities in this [`World`]. pub fn clear_entities(&mut self) { self.storages.tables.clear(); self.storages.sparse_sets.clear_entities(); self.archetypes.clear_entities(); self.entities.clear(); } /// Clears all resources in this [`World`]. /// /// **Note:** Any resource fetch to this [`World`] will fail unless they are re-initialized, /// including engine-internal resources that are only initialized on app/world construction. /// /// This can easily cause systems expecting certain resources to immediately start panicking. /// Use with caution. pub fn clear_resources(&mut self) { self.storages.resources.clear(); self.storages.non_send_resources.clear(); } } impl World { /// Gets a pointer to the resource with the id [`ComponentId`] if it exists. /// The returned pointer must not be used to modify the resource, and must not be /// dereferenced after the immutable borrow of the [`World`] ends. /// /// **You should prefer to use the typed API [`World::get_resource`] where possible and only /// use this in cases where the actual types are not known at compile time.** #[inline] pub fn get_resource_by_id(&self, component_id: ComponentId) -> Option> { // SAFETY: // - `as_unsafe_world_cell_readonly` gives permission to access the whole world immutably // - `&self` ensures there are no mutable borrows on world data unsafe { self.as_unsafe_world_cell_readonly() .get_resource_by_id(component_id) } } /// Gets a pointer to the resource with the id [`ComponentId`] if it exists. /// The returned pointer may be used to modify the resource, as long as the mutable borrow /// of the [`World`] is still valid. /// /// **You should prefer to use the typed API [`World::get_resource_mut`] where possible and only /// use this in cases where the actual types are not known at compile time.** #[inline] pub fn get_resource_mut_by_id(&mut self, component_id: ComponentId) -> Option> { // SAFETY: // - `&mut self` ensures that all accessed data is unaliased // - `as_unsafe_world_cell` provides mutable permission to the whole world unsafe { self.as_unsafe_world_cell() .get_resource_mut_by_id(component_id) } } /// Gets a `!Send` resource to the resource with the id [`ComponentId`] if it exists. /// The returned pointer must not be used to modify the resource, and must not be /// dereferenced after the immutable borrow of the [`World`] ends. /// /// **You should prefer to use the typed API [`World::get_resource`] where possible and only /// use this in cases where the actual types are not known at compile time.** /// /// # Panics /// This function will panic if it isn't called from the same thread that the resource was inserted from. #[inline] pub fn get_non_send_by_id(&self, component_id: ComponentId) -> Option> { // SAFETY: // - `as_unsafe_world_cell_readonly` gives permission to access the whole world immutably // - `&self` ensures there are no mutable borrows on world data unsafe { self.as_unsafe_world_cell_readonly() .get_non_send_resource_by_id(component_id) } } /// Gets a `!Send` resource to the resource with the id [`ComponentId`] if it exists. /// The returned pointer may be used to modify the resource, as long as the mutable borrow /// of the [`World`] is still valid. /// /// **You should prefer to use the typed API [`World::get_resource_mut`] where possible and only /// use this in cases where the actual types are not known at compile time.** /// /// # Panics /// This function will panic if it isn't called from the same thread that the resource was inserted from. #[inline] pub fn get_non_send_mut_by_id(&mut self, component_id: ComponentId) -> Option> { // SAFETY: // - `&mut self` ensures that all accessed data is unaliased // - `as_unsafe_world_cell` provides mutable permission to the whole world unsafe { self.as_unsafe_world_cell() .get_non_send_resource_mut_by_id(component_id) } } /// Removes the resource of a given type, if it exists. Otherwise returns `None`. /// /// **You should prefer to use the typed API [`World::remove_resource`] where possible and only /// use this in cases where the actual types are not known at compile time.** pub fn remove_resource_by_id(&mut self, component_id: ComponentId) -> Option<()> { self.storages .resources .get_mut(component_id)? .remove_and_drop(); Some(()) } /// Removes the resource of a given type, if it exists. Otherwise returns `None`. /// /// **You should prefer to use the typed API [`World::remove_resource`] where possible and only /// use this in cases where the actual types are not known at compile time.** /// /// # Panics /// This function will panic if it isn't called from the same thread that the resource was inserted from. pub fn remove_non_send_by_id(&mut self, component_id: ComponentId) -> Option<()> { self.storages .non_send_resources .get_mut(component_id)? .remove_and_drop(); Some(()) } /// Retrieves an immutable untyped reference to the given `entity`'s [`Component`] of the given [`ComponentId`]. /// Returns `None` if the `entity` does not have a [`Component`] of the given type. /// /// **You should prefer to use the typed API [`World::get_mut`] where possible and only /// use this in cases where the actual types are not known at compile time.** /// /// # Panics /// This function will panic if it isn't called from the same thread that the resource was inserted from. #[inline] pub fn get_by_id(&self, entity: Entity, component_id: ComponentId) -> Option> { // SAFETY: // - `&self` ensures that all accessed data is not mutably aliased // - `as_unsafe_world_cell_readonly` provides shared/readonly permission to the whole world unsafe { self.as_unsafe_world_cell_readonly() .get_entity(entity)? .get_by_id(component_id) } } /// Retrieves a mutable untyped reference to the given `entity`'s [`Component`] of the given [`ComponentId`]. /// Returns `None` if the `entity` does not have a [`Component`] of the given type. /// /// **You should prefer to use the typed API [`World::get_mut`] where possible and only /// use this in cases where the actual types are not known at compile time.** #[inline] pub fn get_mut_by_id( &mut self, entity: Entity, component_id: ComponentId, ) -> Option> { // SAFETY: // - `&mut self` ensures that all accessed data is unaliased // - `as_unsafe_world_cell` provides mutable permission to the whole world unsafe { self.as_unsafe_world_cell() .get_entity(entity)? .get_mut_by_id(component_id) } } } // Schedule-related methods impl World { /// Adds the specified [`Schedule`] to the world. The schedule can later be run /// by calling [`.run_schedule(label)`](Self::run_schedule) or by directly /// accessing the [`Schedules`] resource. /// /// The `Schedules` resource will be initialized if it does not already exist. pub fn add_schedule(&mut self, schedule: Schedule) { let mut schedules = self.get_resource_or_insert_with(Schedules::default); schedules.insert(schedule); } /// Temporarily removes the schedule associated with `label` from the world, /// runs user code, and finally re-adds the schedule. /// This returns a [`TryRunScheduleError`] if there is no schedule /// associated with `label`. /// /// The [`Schedule`] is fetched from the [`Schedules`] resource of the world by its label, /// and system state is cached. /// /// For simple cases where you just need to call the schedule once, /// consider using [`World::try_run_schedule`] instead. /// For other use cases, see the example on [`World::schedule_scope`]. pub fn try_schedule_scope( &mut self, label: impl ScheduleLabel, f: impl FnOnce(&mut World, &mut Schedule) -> R, ) -> Result { let label = label.intern(); let Some(mut schedule) = self .get_resource_mut::() .and_then(|mut s| s.remove(label)) else { return Err(TryRunScheduleError(label)); }; let value = f(self, &mut schedule); let old = self.resource_mut::().insert(schedule); if old.is_some() { warn!("Schedule `{label:?}` was inserted during a call to `World::schedule_scope`: its value has been overwritten"); } Ok(value) } /// Temporarily removes the schedule associated with `label` from the world, /// runs user code, and finally re-adds the schedule. /// /// The [`Schedule`] is fetched from the [`Schedules`] resource of the world by its label, /// and system state is cached. /// /// # Examples /// /// ``` /// # use bevy_ecs::{prelude::*, schedule::ScheduleLabel}; /// # #[derive(ScheduleLabel, Debug, Clone, Copy, PartialEq, Eq, Hash)] /// # pub struct MySchedule; /// # #[derive(Resource)] /// # struct Counter(usize); /// # /// # let mut world = World::new(); /// # world.insert_resource(Counter(0)); /// # let mut schedule = Schedule::new(MySchedule); /// # schedule.add_systems(tick_counter); /// # world.init_resource::(); /// # world.add_schedule(schedule); /// # fn tick_counter(mut counter: ResMut) { counter.0 += 1; } /// // Run the schedule five times. /// world.schedule_scope(MySchedule, |world, schedule| { /// for _ in 0..5 { /// schedule.run(world); /// } /// }); /// # assert_eq!(world.resource::().0, 5); /// ``` /// /// For simple cases where you just need to call the schedule once, /// consider using [`World::run_schedule`] instead. /// /// # Panics /// /// If the requested schedule does not exist. pub fn schedule_scope( &mut self, label: impl ScheduleLabel, f: impl FnOnce(&mut World, &mut Schedule) -> R, ) -> R { self.try_schedule_scope(label, f) .unwrap_or_else(|e| panic!("{e}")) } /// Attempts to run the [`Schedule`] associated with the `label` a single time, /// and returns a [`TryRunScheduleError`] if the schedule does not exist. /// /// The [`Schedule`] is fetched from the [`Schedules`] resource of the world by its label, /// and system state is cached. /// /// For simple testing use cases, call [`Schedule::run(&mut world)`](Schedule::run) instead. pub fn try_run_schedule( &mut self, label: impl ScheduleLabel, ) -> Result<(), TryRunScheduleError> { self.try_schedule_scope(label, |world, sched| sched.run(world)) } /// Runs the [`Schedule`] associated with the `label` a single time. /// /// The [`Schedule`] is fetched from the [`Schedules`] resource of the world by its label, /// and system state is cached. /// /// For simple testing use cases, call [`Schedule::run(&mut world)`](Schedule::run) instead. /// /// # Panics /// /// If the requested schedule does not exist. pub fn run_schedule(&mut self, label: impl ScheduleLabel) { self.schedule_scope(label, |world, sched| sched.run(world)); } /// Ignore system order ambiguities caused by conflicts on [`Component`]s of type `T`. pub fn allow_ambiguous_component(&mut self) { let mut schedules = self.remove_resource::().unwrap_or_default(); schedules.allow_ambiguous_component::(self); self.insert_resource(schedules); } /// Ignore system order ambiguities caused by conflicts on [`Resource`]s of type `T`. pub fn allow_ambiguous_resource(&mut self) { let mut schedules = self.remove_resource::().unwrap_or_default(); schedules.allow_ambiguous_resource::(self); self.insert_resource(schedules); } } impl fmt::Debug for World { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { // SAFETY: `UnsafeWorldCell` requires that this must only access metadata. // Accessing any data stored in the world would be unsound. f.debug_struct("World") .field("id", &self.id) .field("entity_count", &self.entities.len()) .field("archetype_count", &self.archetypes.len()) .field("component_count", &self.components.len()) .field("resource_count", &self.storages.resources.len()) .finish() } } // SAFETY: all methods on the world ensure that non-send resources are only accessible on the main thread unsafe impl Send for World {} // SAFETY: all methods on the world ensure that non-send resources are only accessible on the main thread unsafe impl Sync for World {} /// Creates an instance of the type this trait is implemented for /// using data from the supplied [`World`]. /// /// This can be helpful for complex initialization or context-aware defaults. pub trait FromWorld { /// Creates `Self` using data from the given [`World`]. fn from_world(world: &mut World) -> Self; } impl FromWorld for T { fn from_world(_world: &mut World) -> Self { T::default() } } #[cfg(test)] mod tests { use super::{FromWorld, World}; use crate::{ change_detection::DetectChangesMut, component::{ComponentDescriptor, ComponentInfo, StorageType}, ptr::OwningPtr, system::Resource, }; use bevy_ecs_macros::Component; use bevy_utils::{HashMap, HashSet}; use std::{ any::TypeId, panic, sync::{ atomic::{AtomicBool, AtomicU32, Ordering}, Arc, Mutex, }, }; // For bevy_ecs_macros use crate as bevy_ecs; type ID = u8; #[derive(Clone, Copy, Debug, PartialEq, Eq)] enum DropLogItem { Create(ID), Drop(ID), } #[derive(Resource, Component)] struct MayPanicInDrop { drop_log: Arc>>, expected_panic_flag: Arc, should_panic: bool, id: u8, } impl MayPanicInDrop { fn new( drop_log: &Arc>>, expected_panic_flag: &Arc, should_panic: bool, id: u8, ) -> Self { println!("creating component with id {id}"); drop_log.lock().unwrap().push(DropLogItem::Create(id)); Self { drop_log: Arc::clone(drop_log), expected_panic_flag: Arc::clone(expected_panic_flag), should_panic, id, } } } impl Drop for MayPanicInDrop { fn drop(&mut self) { println!("dropping component with id {}", self.id); { let mut drop_log = self.drop_log.lock().unwrap(); drop_log.push(DropLogItem::Drop(self.id)); // Don't keep the mutex while panicking, or we'll poison it. drop(drop_log); } if self.should_panic { self.expected_panic_flag.store(true, Ordering::SeqCst); panic!("testing what happens on panic inside drop"); } } } struct DropTestHelper { drop_log: Arc>>, /// Set to `true` right before we intentionally panic, so that if we get /// a panic, we know if it was intended or not. expected_panic_flag: Arc, } impl DropTestHelper { pub fn new() -> Self { Self { drop_log: Arc::new(Mutex::new(Vec::::new())), expected_panic_flag: Arc::new(AtomicBool::new(false)), } } pub fn make_component(&self, should_panic: bool, id: ID) -> MayPanicInDrop { MayPanicInDrop::new(&self.drop_log, &self.expected_panic_flag, should_panic, id) } pub fn finish(self, panic_res: std::thread::Result<()>) -> Vec { let drop_log = self.drop_log.lock().unwrap(); let expected_panic_flag = self.expected_panic_flag.load(Ordering::SeqCst); if !expected_panic_flag { match panic_res { Ok(()) => panic!("Expected a panic but it didn't happen"), Err(e) => panic::resume_unwind(e), } } drop_log.to_owned() } } #[test] fn panic_while_overwriting_component() { let helper = DropTestHelper::new(); let res = panic::catch_unwind(|| { let mut world = World::new(); world .spawn_empty() .insert(helper.make_component(true, 0)) .insert(helper.make_component(false, 1)); println!("Done inserting! Dropping world..."); }); let drop_log = helper.finish(res); assert_eq!( &*drop_log, [ DropLogItem::Create(0), DropLogItem::Create(1), DropLogItem::Drop(0), DropLogItem::Drop(1), ] ); } #[derive(Resource)] struct TestResource(u32); #[test] fn get_resource_by_id() { let mut world = World::new(); world.insert_resource(TestResource(42)); let component_id = world .components() .get_resource_id(std::any::TypeId::of::()) .unwrap(); let resource = world.get_resource_by_id(component_id).unwrap(); // SAFETY: `TestResource` is the correct resource type let resource = unsafe { resource.deref::() }; assert_eq!(resource.0, 42); } #[test] fn get_resource_mut_by_id() { let mut world = World::new(); world.insert_resource(TestResource(42)); let component_id = world .components() .get_resource_id(std::any::TypeId::of::()) .unwrap(); { let mut resource = world.get_resource_mut_by_id(component_id).unwrap(); resource.set_changed(); // SAFETY: `TestResource` is the correct resource type let resource = unsafe { resource.into_inner().deref_mut::() }; resource.0 = 43; } let resource = world.get_resource_by_id(component_id).unwrap(); // SAFETY: `TestResource` is the correct resource type let resource = unsafe { resource.deref::() }; assert_eq!(resource.0, 43); } #[test] fn custom_resource_with_layout() { static DROP_COUNT: AtomicU32 = AtomicU32::new(0); let mut world = World::new(); // SAFETY: the drop function is valid for the layout and the data will be safe to access from any thread let descriptor = unsafe { ComponentDescriptor::new_with_layout( "Custom Test Component".to_string(), StorageType::Table, std::alloc::Layout::new::<[u8; 8]>(), Some(|ptr| { let data = ptr.read::<[u8; 8]>(); assert_eq!(data, [0, 1, 2, 3, 4, 5, 6, 7]); DROP_COUNT.fetch_add(1, std::sync::atomic::Ordering::SeqCst); }), ) }; let component_id = world.init_component_with_descriptor(descriptor); let value: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7]; OwningPtr::make(value, |ptr| { // SAFETY: value is valid for the component layout unsafe { world.insert_resource_by_id(component_id, ptr); } }); // SAFETY: [u8; 8] is the correct type for the resource let data = unsafe { world .get_resource_by_id(component_id) .unwrap() .deref::<[u8; 8]>() }; assert_eq!(*data, [0, 1, 2, 3, 4, 5, 6, 7]); assert!(world.remove_resource_by_id(component_id).is_some()); assert_eq!(DROP_COUNT.load(std::sync::atomic::Ordering::SeqCst), 1); } #[derive(Resource)] struct TestFromWorld(u32); impl FromWorld for TestFromWorld { fn from_world(world: &mut World) -> Self { let b = world.resource::(); Self(b.0) } } #[test] fn init_resource_does_not_overwrite() { let mut world = World::new(); world.insert_resource(TestResource(0)); world.init_resource::(); world.insert_resource(TestResource(1)); world.init_resource::(); let resource = world.resource::(); assert_eq!(resource.0, 0); } #[test] fn init_non_send_resource_does_not_overwrite() { let mut world = World::new(); world.insert_resource(TestResource(0)); world.init_non_send_resource::(); world.insert_resource(TestResource(1)); world.init_non_send_resource::(); let resource = world.non_send_resource::(); assert_eq!(resource.0, 0); } #[derive(Component)] struct Foo; #[derive(Component)] struct Bar; #[derive(Component)] struct Baz; #[test] fn inspect_entity_components() { let mut world = World::new(); let ent0 = world.spawn((Foo, Bar, Baz)).id(); let ent1 = world.spawn((Foo, Bar)).id(); let ent2 = world.spawn((Bar, Baz)).id(); let ent3 = world.spawn((Foo, Baz)).id(); let ent4 = world.spawn(Foo).id(); let ent5 = world.spawn(Bar).id(); let ent6 = world.spawn(Baz).id(); fn to_type_ids(component_infos: Vec<&ComponentInfo>) -> HashSet> { component_infos .into_iter() .map(|component_info| component_info.type_id()) .collect() } let foo_id = TypeId::of::(); let bar_id = TypeId::of::(); let baz_id = TypeId::of::(); assert_eq!( to_type_ids(world.inspect_entity(ent0)), [Some(foo_id), Some(bar_id), Some(baz_id)].into() ); assert_eq!( to_type_ids(world.inspect_entity(ent1)), [Some(foo_id), Some(bar_id)].into() ); assert_eq!( to_type_ids(world.inspect_entity(ent2)), [Some(bar_id), Some(baz_id)].into() ); assert_eq!( to_type_ids(world.inspect_entity(ent3)), [Some(foo_id), Some(baz_id)].into() ); assert_eq!( to_type_ids(world.inspect_entity(ent4)), [Some(foo_id)].into() ); assert_eq!( to_type_ids(world.inspect_entity(ent5)), [Some(bar_id)].into() ); assert_eq!( to_type_ids(world.inspect_entity(ent6)), [Some(baz_id)].into() ); } #[test] fn iterate_entities() { let mut world = World::new(); let mut entity_counters = HashMap::new(); let iterate_and_count_entities = |world: &World, entity_counters: &mut HashMap<_, _>| { entity_counters.clear(); for entity in world.iter_entities() { let counter = entity_counters.entry(entity.id()).or_insert(0); *counter += 1; } }; // Adding one entity and validating iteration let ent0 = world.spawn((Foo, Bar, Baz)).id(); iterate_and_count_entities(&world, &mut entity_counters); assert_eq!(entity_counters[&ent0], 1); assert_eq!(entity_counters.len(), 1); // Spawning three more entities and then validating iteration let ent1 = world.spawn((Foo, Bar)).id(); let ent2 = world.spawn((Bar, Baz)).id(); let ent3 = world.spawn((Foo, Baz)).id(); iterate_and_count_entities(&world, &mut entity_counters); assert_eq!(entity_counters[&ent0], 1); assert_eq!(entity_counters[&ent1], 1); assert_eq!(entity_counters[&ent2], 1); assert_eq!(entity_counters[&ent3], 1); assert_eq!(entity_counters.len(), 4); // Despawning first entity and then validating the iteration assert!(world.despawn(ent0)); iterate_and_count_entities(&world, &mut entity_counters); assert_eq!(entity_counters[&ent1], 1); assert_eq!(entity_counters[&ent2], 1); assert_eq!(entity_counters[&ent3], 1); assert_eq!(entity_counters.len(), 3); // Spawning three more entities, despawning three and then validating the iteration let ent4 = world.spawn(Foo).id(); let ent5 = world.spawn(Bar).id(); let ent6 = world.spawn(Baz).id(); assert!(world.despawn(ent2)); assert!(world.despawn(ent3)); assert!(world.despawn(ent4)); iterate_and_count_entities(&world, &mut entity_counters); assert_eq!(entity_counters[&ent1], 1); assert_eq!(entity_counters[&ent5], 1); assert_eq!(entity_counters[&ent6], 1); assert_eq!(entity_counters.len(), 3); // Despawning remaining entities and then validating the iteration assert!(world.despawn(ent1)); assert!(world.despawn(ent5)); assert!(world.despawn(ent6)); iterate_and_count_entities(&world, &mut entity_counters); assert_eq!(entity_counters.len(), 0); } #[test] fn iterate_entities_mut() { #[derive(Component, PartialEq, Debug)] struct A(i32); #[derive(Component, PartialEq, Debug)] struct B(i32); let mut world = World::new(); let a1 = world.spawn(A(1)).id(); let a2 = world.spawn(A(2)).id(); let b1 = world.spawn(B(1)).id(); let b2 = world.spawn(B(2)).id(); for mut entity in world.iter_entities_mut() { if let Some(mut a) = entity.get_mut::() { a.0 -= 1; } } assert_eq!(world.entity(a1).get(), Some(&A(0))); assert_eq!(world.entity(a2).get(), Some(&A(1))); assert_eq!(world.entity(b1).get(), Some(&B(1))); assert_eq!(world.entity(b2).get(), Some(&B(2))); for mut entity in world.iter_entities_mut() { if let Some(mut b) = entity.get_mut::() { b.0 *= 2; } } assert_eq!(world.entity(a1).get(), Some(&A(0))); assert_eq!(world.entity(a2).get(), Some(&A(1))); assert_eq!(world.entity(b1).get(), Some(&B(2))); assert_eq!(world.entity(b2).get(), Some(&B(4))); let mut entities = world.iter_entities_mut().collect::>(); entities.sort_by_key(|e| e.get::().map(|a| a.0).or(e.get::().map(|b| b.0))); let (a, b) = entities.split_at_mut(2); std::mem::swap( &mut a[1].get_mut::().unwrap().0, &mut b[0].get_mut::().unwrap().0, ); assert_eq!(world.entity(a1).get(), Some(&A(0))); assert_eq!(world.entity(a2).get(), Some(&A(2))); assert_eq!(world.entity(b1).get(), Some(&B(1))); assert_eq!(world.entity(b2).get(), Some(&B(4))); } #[test] fn spawn_empty_bundle() { let mut world = World::new(); world.spawn(()); } }