//! Tools for controlling behavior in an ECS application. //! //! Systems define how an ECS based application behaves. They have to be registered to a //! [`SystemStage`](crate::schedule::SystemStage) to be able to run. A system is usually //! written as a normal function that will be automatically converted into a system. //! //! System functions can have parameters, through which one can query and mutate Bevy ECS state. //! Only types that implement [`SystemParam`] can be used, automatically fetching data from //! the [`World`](crate::world::World). //! //! System functions often look like this: //! //! ``` //! # use bevy_ecs::prelude::*; //! # //! # #[derive(Component)] //! # struct Player { alive: bool } //! # #[derive(Component)] //! # struct Score(u32); //! # #[derive(Resource)] //! # struct Round(u32); //! # //! fn update_score_system( //! mut query: Query<(&Player, &mut Score)>, //! mut round: ResMut, //! ) { //! for (player, mut score) in &mut query { //! if player.alive { //! score.0 += round.0; //! } //! } //! round.0 += 1; //! } //! # bevy_ecs::system::assert_is_system(update_score_system); //! ``` //! //! # System ordering //! //! While the execution of systems is usually parallel and not deterministic, there are two //! ways to determine a certain degree of execution order: //! //! - **System Stages:** They determine hard execution synchronization boundaries inside of //! which systems run in parallel by default. //! - **Labeling:** First, systems are labeled upon creation by calling `.label()`. Then, //! methods such as `.before()` and `.after()` are appended to systems to determine //! execution order in respect to other systems. //! //! # System parameter list //! Following is the complete list of accepted types as system parameters: //! //! - [`Query`] //! - [`Res`] and `Option` //! - [`ResMut`] and `Option` //! - [`Commands`] //! - [`Local`] //! - [`EventReader`](crate::event::EventReader) //! - [`EventWriter`](crate::event::EventWriter) //! - [`NonSend`] and `Option` //! - [`NonSendMut`] and `Option` //! - [`&World`](crate::world::World) //! - [`RemovedComponents`] //! - [`SystemName`] //! - [`SystemChangeTick`] //! - [`Archetypes`](crate::archetype::Archetypes) (Provides Archetype metadata) //! - [`Bundles`](crate::bundle::Bundles) (Provides Bundles metadata) //! - [`Components`](crate::component::Components) (Provides Components metadata) //! - [`Entities`](crate::entity::Entities) (Provides Entities metadata) //! - All tuples between 1 to 16 elements where each element implements [`SystemParam`] //! - [`()` (unit primitive type)](https://doc.rust-lang.org/stable/std/primitive.unit.html) mod commands; mod exclusive_function_system; mod exclusive_system_param; mod function_system; mod query; #[allow(clippy::module_inception)] mod system; mod system_param; mod system_piping; pub use commands::*; pub use exclusive_function_system::*; pub use exclusive_system_param::*; pub use function_system::*; pub use query::*; pub use system::*; pub use system_param::*; pub use system_piping::*; /// Ensure that a given function is a system /// /// This should be used when writing doc examples, /// to confirm that systems used in an example are /// valid systems pub fn assert_is_system>(sys: S) { if false { // Check it can be converted into a system // TODO: This should ensure that the system has no conflicting system params IntoSystem::into_system(sys); } } #[cfg(test)] mod tests { use std::any::TypeId; use crate::prelude::StageLabel; use crate::{ self as bevy_ecs, archetype::{ArchetypeComponentId, Archetypes}, bundle::Bundles, component::{Component, Components}, entity::{Entities, Entity}, prelude::AnyOf, query::{Added, Changed, Or, With, Without}, schedule::{Schedule, Stage, SystemStage}, system::{ Commands, IntoSystem, Local, NonSend, NonSendMut, ParamSet, Query, QueryComponentError, RemovedComponents, Res, ResMut, Resource, System, SystemState, }, world::{FromWorld, World}, }; #[derive(Resource, PartialEq, Debug)] enum SystemRan { Yes, No, } #[derive(Component, Resource, Debug, Eq, PartialEq, Default)] struct A; #[derive(Component, Resource)] struct B; #[derive(Component, Resource)] struct C; #[derive(Component, Resource)] struct D; #[derive(Component, Resource)] struct E; #[derive(Component, Resource)] struct F; #[derive(Component, Debug)] struct W(T); #[derive(StageLabel)] struct UpdateStage; #[test] fn simple_system() { fn sys(query: Query<&A>) { for a in &query { println!("{a:?}"); } } let mut system = IntoSystem::into_system(sys); let mut world = World::new(); world.spawn(A); system.initialize(&mut world); system.run((), &mut world); } fn run_system>(world: &mut World, system: S) { let mut schedule = Schedule::default(); let mut update = SystemStage::parallel(); update.add_system(system); schedule.add_stage(UpdateStage, update); schedule.run(world); } #[test] fn query_system_gets() { fn query_system( mut ran: ResMut, entity_query: Query>, b_query: Query<&B>, a_c_query: Query<(&A, &C)>, d_query: Query<&D>, ) { let entities = entity_query.iter().collect::>(); assert!( b_query.get_component::(entities[0]).is_err(), "entity 0 should not have B" ); assert!( b_query.get_component::(entities[1]).is_ok(), "entity 1 should have B" ); assert!( b_query.get_component::(entities[1]).is_err(), "entity 1 should have A, but b_query shouldn't have access to it" ); assert!( b_query.get_component::(entities[3]).is_err(), "entity 3 should have D, but it shouldn't be accessible from b_query" ); assert!( b_query.get_component::(entities[2]).is_err(), "entity 2 has C, but it shouldn't be accessible from b_query" ); assert!( a_c_query.get_component::(entities[2]).is_ok(), "entity 2 has C, and it should be accessible from a_c_query" ); assert!( a_c_query.get_component::(entities[3]).is_err(), "entity 3 should have D, but it shouldn't be accessible from b_query" ); assert!( d_query.get_component::(entities[3]).is_ok(), "entity 3 should have D" ); *ran = SystemRan::Yes; } let mut world = World::default(); world.insert_resource(SystemRan::No); world.spawn(A); world.spawn((A, B)); world.spawn((A, C)); world.spawn((A, D)); run_system(&mut world, query_system); assert_eq!(*world.resource::(), SystemRan::Yes); } #[test] fn or_param_set_system() { // Regression test for issue #762 fn query_system( mut ran: ResMut, mut set: ParamSet<( Query<(), Or<(Changed, Changed)>>, Query<(), Or<(Added, Added)>>, )>, ) { let changed = set.p0().iter().count(); let added = set.p1().iter().count(); assert_eq!(changed, 1); assert_eq!(added, 1); *ran = SystemRan::Yes; } let mut world = World::default(); world.insert_resource(SystemRan::No); world.spawn((A, B)); run_system(&mut world, query_system); assert_eq!(*world.resource::(), SystemRan::Yes); } #[test] fn changed_resource_system() { use crate::system::Resource; #[derive(Resource)] struct Flipper(bool); #[derive(Resource)] struct Added(usize); #[derive(Resource)] struct Changed(usize); fn incr_e_on_flip( value: Res, mut changed: ResMut, mut added: ResMut, ) { if value.is_added() { added.0 += 1; } if value.is_changed() { changed.0 += 1; } } let mut world = World::default(); world.insert_resource(Flipper(false)); world.insert_resource(Added(0)); world.insert_resource(Changed(0)); #[derive(StageLabel)] struct ClearTrackers; let mut schedule = Schedule::default(); let mut update = SystemStage::parallel(); update.add_system(incr_e_on_flip); schedule.add_stage(UpdateStage, update); schedule.add_stage(ClearTrackers, SystemStage::single(World::clear_trackers)); schedule.run(&mut world); assert_eq!(world.resource::().0, 1); assert_eq!(world.resource::().0, 1); schedule.run(&mut world); assert_eq!(world.resource::().0, 1); assert_eq!(world.resource::().0, 1); world.resource_mut::().0 = true; schedule.run(&mut world); assert_eq!(world.resource::().0, 1); assert_eq!(world.resource::().0, 2); } #[test] #[should_panic = "error[B0001]"] fn option_has_no_filter_with() { fn sys(_: Query<(Option<&A>, &mut B)>, _: Query<&mut B, Without>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] fn option_doesnt_remove_unrelated_filter_with() { fn sys(_: Query<(Option<&A>, &mut B, &A)>, _: Query<&mut B, Without>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] #[should_panic = "error[B0001]"] fn any_of_has_no_filter_with() { fn sys(_: Query<(AnyOf<(&A, ())>, &mut B)>, _: Query<&mut B, Without>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] fn any_of_has_filter_with_when_both_have_it() { fn sys(_: Query<(AnyOf<(&A, &A)>, &mut B)>, _: Query<&mut B, Without>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] fn any_of_doesnt_remove_unrelated_filter_with() { fn sys(_: Query<(AnyOf<(&A, ())>, &mut B, &A)>, _: Query<&mut B, Without>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] #[should_panic = "error[B0001]"] fn or_has_no_filter_with() { fn sys(_: Query<&mut B, Or<(With, With)>>, _: Query<&mut B, Without>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] fn or_has_filter_with_when_both_have_it() { fn sys(_: Query<&mut B, Or<(With, With)>>, _: Query<&mut B, Without>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] fn or_doesnt_remove_unrelated_filter_with() { fn sys(_: Query<&mut B, (Or<(With, With)>, With)>, _: Query<&mut B, Without>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] #[should_panic] fn conflicting_query_mut_system() { fn sys(_q1: Query<&mut A>, _q2: Query<&mut A>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] fn disjoint_query_mut_system() { fn sys(_q1: Query<&mut A, With>, _q2: Query<&mut A, Without>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] fn disjoint_query_mut_read_component_system() { fn sys(_q1: Query<(&mut A, &B)>, _q2: Query<&mut A, Without>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] #[should_panic] fn conflicting_query_immut_system() { fn sys(_q1: Query<&A>, _q2: Query<&mut A>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] fn query_set_system() { fn sys(mut _set: ParamSet<(Query<&mut A>, Query<&A>)>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] #[should_panic] fn conflicting_query_with_query_set_system() { fn sys(_query: Query<&mut A>, _set: ParamSet<(Query<&mut A>, Query<&B>)>) {} let mut world = World::default(); run_system(&mut world, sys); } #[test] #[should_panic] fn conflicting_query_sets_system() { fn sys(_set_1: ParamSet<(Query<&mut A>,)>, _set_2: ParamSet<(Query<&mut A>, Query<&B>)>) {} let mut world = World::default(); run_system(&mut world, sys); } #[derive(Default, Resource)] struct BufferRes { _buffer: Vec, } fn test_for_conflicting_resources>(sys: S) { let mut world = World::default(); world.insert_resource(BufferRes::default()); world.insert_resource(A); world.insert_resource(B); run_system(&mut world, sys); } #[test] #[should_panic] fn conflicting_system_resources() { fn sys(_: ResMut, _: Res) {} test_for_conflicting_resources(sys); } #[test] #[should_panic] fn conflicting_system_resources_reverse_order() { fn sys(_: Res, _: ResMut) {} test_for_conflicting_resources(sys); } #[test] #[should_panic] fn conflicting_system_resources_multiple_mutable() { fn sys(_: ResMut, _: ResMut) {} test_for_conflicting_resources(sys); } #[test] fn nonconflicting_system_resources() { fn sys(_: Local, _: ResMut, _: Local, _: ResMut) {} test_for_conflicting_resources(sys); } #[test] fn local_system() { let mut world = World::default(); world.insert_resource(ProtoFoo { value: 1 }); world.insert_resource(SystemRan::No); struct Foo { value: u32, } #[derive(Resource)] struct ProtoFoo { value: u32, } impl FromWorld for Foo { fn from_world(world: &mut World) -> Self { Foo { value: world.resource::().value + 1, } } } fn sys(local: Local, mut system_ran: ResMut) { assert_eq!(local.value, 2); *system_ran = SystemRan::Yes; } run_system(&mut world, sys); // ensure the system actually ran assert_eq!(*world.resource::(), SystemRan::Yes); } #[test] fn non_send_option_system() { let mut world = World::default(); world.insert_resource(SystemRan::No); struct NotSend1(std::rc::Rc); struct NotSend2(std::rc::Rc); world.insert_non_send_resource(NotSend1(std::rc::Rc::new(0))); fn sys( op: Option>, mut _op2: Option>, mut system_ran: ResMut, ) { op.expect("NonSend should exist"); *system_ran = SystemRan::Yes; } run_system(&mut world, sys); // ensure the system actually ran assert_eq!(*world.resource::(), SystemRan::Yes); } #[test] fn non_send_system() { let mut world = World::default(); world.insert_resource(SystemRan::No); struct NotSend1(std::rc::Rc); struct NotSend2(std::rc::Rc); world.insert_non_send_resource(NotSend1(std::rc::Rc::new(1))); world.insert_non_send_resource(NotSend2(std::rc::Rc::new(2))); fn sys( _op: NonSend, mut _op2: NonSendMut, mut system_ran: ResMut, ) { *system_ran = SystemRan::Yes; } run_system(&mut world, sys); assert_eq!(*world.resource::(), SystemRan::Yes); } #[test] fn removal_tracking() { let mut world = World::new(); let entity_to_despawn = world.spawn(W(1)).id(); let entity_to_remove_w_from = world.spawn(W(2)).id(); let spurious_entity = world.spawn_empty().id(); // Track which entities we want to operate on #[derive(Resource)] struct Despawned(Entity); world.insert_resource(Despawned(entity_to_despawn)); #[derive(Resource)] struct Removed(Entity); world.insert_resource(Removed(entity_to_remove_w_from)); // Verify that all the systems actually ran #[derive(Default, Resource)] struct NSystems(usize); world.insert_resource(NSystems::default()); // First, check that removal detection is triggered if and only if we despawn an entity with the correct component world.entity_mut(entity_to_despawn).despawn(); world.entity_mut(spurious_entity).despawn(); fn validate_despawn( removed_i32: RemovedComponents>, despawned: Res, mut n_systems: ResMut, ) { assert_eq!( removed_i32.iter().collect::>(), &[despawned.0], "despawning causes the correct entity to show up in the 'RemovedComponent' system parameter." ); n_systems.0 += 1; } run_system(&mut world, validate_despawn); // Reset the trackers to clear the buffer of removed components // Ordinarily, this is done in a system added by MinimalPlugins world.clear_trackers(); // Then, try removing a component world.spawn(W(3)); world.spawn(W(4)); world.entity_mut(entity_to_remove_w_from).remove::>(); fn validate_remove( removed_i32: RemovedComponents>, removed: Res, mut n_systems: ResMut, ) { assert_eq!( removed_i32.iter().collect::>(), &[removed.0], "removing a component causes the correct entity to show up in the 'RemovedComponent' system parameter." ); n_systems.0 += 1; } run_system(&mut world, validate_remove); // Verify that both systems actually ran assert_eq!(world.resource::().0, 2); } #[test] fn world_collections_system() { let mut world = World::default(); world.insert_resource(SystemRan::No); world.spawn((W(42), W(true))); fn sys( archetypes: &Archetypes, components: &Components, entities: &Entities, bundles: &Bundles, query: Query>>, mut system_ran: ResMut, ) { assert_eq!(query.iter().count(), 1, "entity exists"); for entity in &query { let location = entities.get(entity).unwrap(); let archetype = archetypes.get(location.archetype_id).unwrap(); let archetype_components = archetype.components().collect::>(); let bundle_id = bundles .get_id(std::any::TypeId::of::<(W, W)>()) .expect("Bundle used to spawn entity should exist"); let bundle_info = bundles.get(bundle_id).unwrap(); let mut bundle_components = bundle_info.components().to_vec(); bundle_components.sort(); for component_id in &bundle_components { assert!( components.get_info(*component_id).is_some(), "every bundle component exists in Components" ); } assert_eq!( bundle_components, archetype_components, "entity's bundle components exactly match entity's archetype components" ); } *system_ran = SystemRan::Yes; } run_system(&mut world, sys); // ensure the system actually ran assert_eq!(*world.resource::(), SystemRan::Yes); } #[test] fn get_system_conflicts() { fn sys_x(_: Res, _: Res, _: Query<(&C, &D)>) {} fn sys_y(_: Res, _: ResMut, _: Query<(&C, &mut D)>) {} let mut world = World::default(); let mut x = IntoSystem::into_system(sys_x); let mut y = IntoSystem::into_system(sys_y); x.initialize(&mut world); y.initialize(&mut world); let conflicts = x.component_access().get_conflicts(y.component_access()); let b_id = world .components() .get_resource_id(TypeId::of::()) .unwrap(); let d_id = world.components().get_id(TypeId::of::()).unwrap(); assert_eq!(conflicts, vec![b_id, d_id]); } #[test] fn query_is_empty() { fn without_filter(not_empty: Query<&A>, empty: Query<&B>) { assert!(!not_empty.is_empty()); assert!(empty.is_empty()); } fn with_filter(not_empty: Query<&A, With>, empty: Query<&A, With>) { assert!(!not_empty.is_empty()); assert!(empty.is_empty()); } let mut world = World::default(); world.spawn(A).insert(C); let mut without_filter = IntoSystem::into_system(without_filter); without_filter.initialize(&mut world); without_filter.run((), &mut world); let mut with_filter = IntoSystem::into_system(with_filter); with_filter.initialize(&mut world); with_filter.run((), &mut world); } #[test] #[allow(clippy::too_many_arguments)] fn can_have_16_parameters() { fn sys_x( _: Res, _: Res, _: Res, _: Res, _: Res, _: Res, _: Query<&A>, _: Query<&B>, _: Query<&C>, _: Query<&D>, _: Query<&E>, _: Query<&F>, _: Query<(&A, &B)>, _: Query<(&C, &D)>, _: Query<(&E, &F)>, ) { } fn sys_y( _: ( Res, Res, Res, Res, Res, Res, Query<&A>, Query<&B>, Query<&C>, Query<&D>, Query<&E>, Query<&F>, Query<(&A, &B)>, Query<(&C, &D)>, Query<(&E, &F)>, ), ) { } let mut world = World::default(); let mut x = IntoSystem::into_system(sys_x); let mut y = IntoSystem::into_system(sys_y); x.initialize(&mut world); y.initialize(&mut world); } #[test] fn read_system_state() { #[derive(Eq, PartialEq, Debug, Resource)] struct A(usize); #[derive(Component, Eq, PartialEq, Debug)] struct B(usize); let mut world = World::default(); world.insert_resource(A(42)); world.spawn(B(7)); let mut system_state: SystemState<(Res, Query<&B>, ParamSet<(Query<&C>, Query<&D>)>)> = SystemState::new(&mut world); let (a, query, _) = system_state.get(&world); assert_eq!(*a, A(42), "returned resource matches initial value"); assert_eq!( *query.single(), B(7), "returned component matches initial value" ); } #[test] fn write_system_state() { #[derive(Resource, Eq, PartialEq, Debug)] struct A(usize); #[derive(Component, Eq, PartialEq, Debug)] struct B(usize); let mut world = World::default(); world.insert_resource(A(42)); world.spawn(B(7)); let mut system_state: SystemState<(ResMut, Query<&mut B>)> = SystemState::new(&mut world); // The following line shouldn't compile because the parameters used are not ReadOnlySystemParam // let (a, query) = system_state.get(&world); let (a, mut query) = system_state.get_mut(&mut world); assert_eq!(*a, A(42), "returned resource matches initial value"); assert_eq!( *query.single_mut(), B(7), "returned component matches initial value" ); } #[test] fn system_state_change_detection() { #[derive(Component, Eq, PartialEq, Debug)] struct A(usize); let mut world = World::default(); let entity = world.spawn(A(1)).id(); let mut system_state: SystemState>> = SystemState::new(&mut world); { let query = system_state.get(&world); assert_eq!(*query.single(), A(1)); } { let query = system_state.get(&world); assert!(query.get_single().is_err()); } world.entity_mut(entity).get_mut::().unwrap().0 = 2; { let query = system_state.get(&world); assert_eq!(*query.single(), A(2)); } } #[test] #[should_panic] fn system_state_invalid_world() { let mut world = World::default(); let mut system_state = SystemState::>::new(&mut world); let mismatched_world = World::default(); system_state.get(&mismatched_world); } #[test] fn system_state_archetype_update() { #[derive(Component, Eq, PartialEq, Debug)] struct A(usize); #[derive(Component, Eq, PartialEq, Debug)] struct B(usize); let mut world = World::default(); world.spawn(A(1)); let mut system_state = SystemState::>::new(&mut world); { let query = system_state.get(&world); assert_eq!( query.iter().collect::>(), vec![&A(1)], "exactly one component returned" ); } world.spawn((A(2), B(2))); { let query = system_state.get(&world); assert_eq!( query.iter().collect::>(), vec![&A(1), &A(2)], "components from both archetypes returned" ); } } /// this test exists to show that read-only world-only queries can return data that lives as long as 'world #[test] #[allow(unused)] fn long_life_test() { struct Holder<'w> { value: &'w A, } struct State { state: SystemState>, state_q: SystemState>, } impl State { fn hold_res<'w>(&mut self, world: &'w World) -> Holder<'w> { let a = self.state.get(world); Holder { value: a.into_inner(), } } fn hold_component<'w>(&mut self, world: &'w World, entity: Entity) -> Holder<'w> { let q = self.state_q.get(world); let a = q.get_inner(entity).unwrap(); Holder { value: a } } fn hold_components<'w>(&mut self, world: &'w World) -> Vec> { let mut components = Vec::new(); let q = self.state_q.get(world); for a in q.iter_inner() { components.push(Holder { value: a }); } components } } } #[test] fn immutable_mut_test() { #[derive(Component, Eq, PartialEq, Debug, Clone, Copy)] struct A(usize); let mut world = World::default(); world.spawn(A(1)); world.spawn(A(2)); let mut system_state = SystemState::>::new(&mut world); { let mut query = system_state.get_mut(&mut world); assert_eq!( query.iter_mut().map(|m| *m).collect::>(), vec![A(1), A(2)], "both components returned by iter_mut of &mut" ); assert_eq!( query.iter().collect::>(), vec![&A(1), &A(2)], "both components returned by iter of &mut" ); } } #[test] fn convert_mut_to_immut() { { let mut world = World::new(); fn mutable_query(mut query: Query<&mut A>) { for _ in &mut query {} immutable_query(query.to_readonly()); } fn immutable_query(_: Query<&A>) {} let mut sys = IntoSystem::into_system(mutable_query); sys.initialize(&mut world); } { let mut world = World::new(); fn mutable_query(mut query: Query>) { for _ in &mut query {} immutable_query(query.to_readonly()); } fn immutable_query(_: Query>) {} let mut sys = IntoSystem::into_system(mutable_query); sys.initialize(&mut world); } { let mut world = World::new(); fn mutable_query(mut query: Query<(&mut A, &B)>) { for _ in &mut query {} immutable_query(query.to_readonly()); } fn immutable_query(_: Query<(&A, &B)>) {} let mut sys = IntoSystem::into_system(mutable_query); sys.initialize(&mut world); } { let mut world = World::new(); fn mutable_query(mut query: Query<(&mut A, &mut B)>) { for _ in &mut query {} immutable_query(query.to_readonly()); } fn immutable_query(_: Query<(&A, &B)>) {} let mut sys = IntoSystem::into_system(mutable_query); sys.initialize(&mut world); } { let mut world = World::new(); fn mutable_query(mut query: Query<(&mut A, &mut B), With>) { for _ in &mut query {} immutable_query(query.to_readonly()); } fn immutable_query(_: Query<(&A, &B), With>) {} let mut sys = IntoSystem::into_system(mutable_query); sys.initialize(&mut world); } { let mut world = World::new(); fn mutable_query(mut query: Query<(&mut A, &mut B), Without>) { for _ in &mut query {} immutable_query(query.to_readonly()); } fn immutable_query(_: Query<(&A, &B), Without>) {} let mut sys = IntoSystem::into_system(mutable_query); sys.initialize(&mut world); } { let mut world = World::new(); fn mutable_query(mut query: Query<(&mut A, &mut B), Added>) { for _ in &mut query {} immutable_query(query.to_readonly()); } fn immutable_query(_: Query<(&A, &B), Added>) {} let mut sys = IntoSystem::into_system(mutable_query); sys.initialize(&mut world); } { let mut world = World::new(); fn mutable_query(mut query: Query<(&mut A, &mut B), Changed>) { for _ in &mut query {} immutable_query(query.to_readonly()); } fn immutable_query(_: Query<(&A, &B), Changed>) {} let mut sys = IntoSystem::into_system(mutable_query); sys.initialize(&mut world); } } #[test] fn update_archetype_component_access_works() { use std::collections::HashSet; fn a_not_b_system(_query: Query<&A, Without>) {} let mut world = World::default(); let mut system = IntoSystem::into_system(a_not_b_system); let mut expected_ids = HashSet::::new(); let a_id = world.init_component::(); // set up system and verify its access is empty system.initialize(&mut world); system.update_archetype_component_access(&world); assert_eq!( system .archetype_component_access() .reads() .collect::>(), expected_ids ); // add some entities with archetypes that should match and save their ids expected_ids.insert( world .spawn(A) .archetype() .get_archetype_component_id(a_id) .unwrap(), ); expected_ids.insert( world .spawn((A, C)) .archetype() .get_archetype_component_id(a_id) .unwrap(), ); // add some entities with archetypes that should not match world.spawn((A, B)); world.spawn((B, C)); // update system and verify its accesses are correct system.update_archetype_component_access(&world); assert_eq!( system .archetype_component_access() .reads() .collect::>(), expected_ids ); // one more round expected_ids.insert( world .spawn((A, D)) .archetype() .get_archetype_component_id(a_id) .unwrap(), ); world.spawn((A, B, D)); system.update_archetype_component_access(&world); assert_eq!( system .archetype_component_access() .reads() .collect::>(), expected_ids ); } #[test] fn commands_param_set() { // Regression test for #4676 let mut world = World::new(); let entity = world.spawn_empty().id(); run_system( &mut world, move |mut commands_set: ParamSet<(Commands, Commands)>| { commands_set.p0().entity(entity).insert(A); commands_set.p1().entity(entity).insert(B); }, ); let entity = world.entity(entity); assert!(entity.contains::()); assert!(entity.contains::()); } #[test] fn into_iter_impl() { let mut world = World::new(); world.spawn(W(42u32)); run_system(&mut world, |mut q: Query<&mut W>| { for mut a in &mut q { assert_eq!(a.0, 42); a.0 = 0; } for a in &q { assert_eq!(a.0, 0); } }); } #[test] fn readonly_query_get_mut_component_fails() { let mut world = World::new(); let entity = world.spawn(W(42u32)).id(); run_system(&mut world, move |q: Query<&mut W>| { let mut rq = q.to_readonly(); assert_eq!( QueryComponentError::MissingWriteAccess, rq.get_component_mut::>(entity).unwrap_err(), ); }); } }