#define_import_path bevy_pbr::mesh_functions #import bevy_pbr::{ mesh_view_bindings::{ view, visibility_ranges, VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE }, mesh_bindings::mesh, mesh_types::MESH_FLAGS_SIGN_DETERMINANT_MODEL_3X3_BIT, view_transformations::position_world_to_clip, } #import bevy_render::maths::{affine3_to_square, mat2x4_f32_to_mat3x3_unpack} fn get_model_matrix(instance_index: u32) -> mat4x4 { return affine3_to_square(mesh[instance_index].model); } fn get_previous_model_matrix(instance_index: u32) -> mat4x4 { return affine3_to_square(mesh[instance_index].previous_model); } fn mesh_position_local_to_world(model: mat4x4, vertex_position: vec4) -> vec4 { return model * vertex_position; } // NOTE: The intermediate world_position assignment is important // for precision purposes when using the 'equals' depth comparison // function. fn mesh_position_local_to_clip(model: mat4x4, vertex_position: vec4) -> vec4 { let world_position = mesh_position_local_to_world(model, vertex_position); return position_world_to_clip(world_position.xyz); } fn mesh_normal_local_to_world(vertex_normal: vec3, instance_index: u32) -> vec3 { // NOTE: The mikktspace method of normal mapping requires that the world normal is // re-normalized in the vertex shader to match the way mikktspace bakes vertex tangents // and normal maps so that the exact inverse process is applied when shading. Blender, Unity, // Unreal Engine, Godot, and more all use the mikktspace method. // We only skip normalization for invalid normals so that they don't become NaN. // Do not change this code unless you really know what you are doing. // http://www.mikktspace.com/ if any(vertex_normal != vec3(0.0)) { return normalize( mat2x4_f32_to_mat3x3_unpack( mesh[instance_index].inverse_transpose_model_a, mesh[instance_index].inverse_transpose_model_b, ) * vertex_normal ); } else { return vertex_normal; } } // Calculates the sign of the determinant of the 3x3 model matrix based on a // mesh flag fn sign_determinant_model_3x3m(instance_index: u32) -> f32 { // bool(u32) is false if 0u else true // f32(bool) is 1.0 if true else 0.0 // * 2.0 - 1.0 remaps 0.0 or 1.0 to -1.0 or 1.0 respectively return f32(bool(mesh[instance_index].flags & MESH_FLAGS_SIGN_DETERMINANT_MODEL_3X3_BIT)) * 2.0 - 1.0; } fn mesh_tangent_local_to_world(model: mat4x4, vertex_tangent: vec4, instance_index: u32) -> vec4 { // NOTE: The mikktspace method of normal mapping requires that the world tangent is // re-normalized in the vertex shader to match the way mikktspace bakes vertex tangents // and normal maps so that the exact inverse process is applied when shading. Blender, Unity, // Unreal Engine, Godot, and more all use the mikktspace method. // We only skip normalization for invalid tangents so that they don't become NaN. // Do not change this code unless you really know what you are doing. // http://www.mikktspace.com/ if any(vertex_tangent != vec4(0.0)) { return vec4( normalize( mat3x3( model[0].xyz, model[1].xyz, model[2].xyz ) * vertex_tangent.xyz ), // NOTE: Multiplying by the sign of the determinant of the 3x3 model matrix accounts for // situations such as negative scaling. vertex_tangent.w * sign_determinant_model_3x3m(instance_index) ); } else { return vertex_tangent; } } // Returns an appropriate dither level for the current mesh instance. // // This looks up the LOD range in the `visibility_ranges` table and compares the // camera distance to determine the dithering level. #ifdef VISIBILITY_RANGE_DITHER fn get_visibility_range_dither_level(instance_index: u32, world_position: vec4) -> i32 { #if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 6 // If we're using a storage buffer, then the length is variable. let visibility_buffer_array_len = arrayLength(&visibility_ranges); #else // AVAILABLE_STORAGE_BUFFER_BINDINGS >= 6 // If we're using a uniform buffer, then the length is constant let visibility_buffer_array_len = VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE; #endif // AVAILABLE_STORAGE_BUFFER_BINDINGS >= 6 let visibility_buffer_index = mesh[instance_index].flags & 0xffffu; if (visibility_buffer_index > visibility_buffer_array_len) { return -16; } let lod_range = visibility_ranges[visibility_buffer_index]; let camera_distance = length(view.world_position.xyz - world_position.xyz); // This encodes the following mapping: // // `lod_range.` x y z w camera distance // ←───────┼────────┼────────┼────────┼────────→ // LOD level -16 -16 0 0 16 16 LOD level let offset = select(-16, 0, camera_distance >= lod_range.z); let bounds = select(lod_range.xy, lod_range.zw, camera_distance >= lod_range.z); let level = i32(round((camera_distance - bounds.x) / (bounds.y - bounds.x) * 16.0)); return offset + clamp(level, 0, 16); } #endif