use crate::{IVec2, Rect, URect}; /// A rectangle defined by two opposite corners. /// /// The rectangle is axis aligned, and defined by its minimum and maximum coordinates, /// stored in `IRect::min` and `IRect::max`, respectively. The minimum/maximum invariant /// must be upheld by the user when directly assigning the fields, otherwise some methods /// produce invalid results. It is generally recommended to use one of the constructor /// methods instead, which will ensure this invariant is met, unless you already have /// the minimum and maximum corners. #[repr(C)] #[derive(Default, Clone, Copy, Debug, PartialEq, Eq, Hash)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct IRect { /// The minimum corner point of the rect. pub min: IVec2, /// The maximum corner point of the rect. pub max: IVec2, } impl IRect { /// Create a new rectangle from two corner points. /// /// The two points do not need to be the minimum and/or maximum corners. /// They only need to be two opposite corners. /// /// # Examples /// /// ``` /// # use bevy_math::IRect; /// let r = IRect::new(0, 4, 10, 6); // w=10 h=2 /// let r = IRect::new(2, 3, 5, -1); // w=3 h=4 /// ``` #[inline] pub fn new(x0: i32, y0: i32, x1: i32, y1: i32) -> Self { Self::from_corners(IVec2::new(x0, y0), IVec2::new(x1, y1)) } /// Create a new rectangle from two corner points. /// /// The two points do not need to be the minimum and/or maximum corners. /// They only need to be two opposite corners. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// // Unit rect from [0,0] to [1,1] /// let r = IRect::from_corners(IVec2::ZERO, IVec2::ONE); // w=1 h=1 /// // Same; the points do not need to be ordered /// let r = IRect::from_corners(IVec2::ONE, IVec2::ZERO); // w=1 h=1 /// ``` #[inline] pub fn from_corners(p0: IVec2, p1: IVec2) -> Self { Self { min: p0.min(p1), max: p0.max(p1), } } /// Create a new rectangle from its center and size. /// /// # Rounding Behaviour /// /// If the size contains odd numbers they will be rounded down to the nearest whole number. /// /// # Panics /// /// This method panics if any of the components of the size is negative. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// let r = IRect::from_center_size(IVec2::ZERO, IVec2::new(3, 2)); // w=2 h=2 /// assert_eq!(r.min, IVec2::splat(-1)); /// assert_eq!(r.max, IVec2::splat(1)); /// ``` #[inline] pub fn from_center_size(origin: IVec2, size: IVec2) -> Self { debug_assert!(size.cmpge(IVec2::ZERO).all(), "IRect size must be positive"); let half_size = size / 2; Self::from_center_half_size(origin, half_size) } /// Create a new rectangle from its center and half-size. /// /// # Panics /// /// This method panics if any of the components of the half-size is negative. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// let r = IRect::from_center_half_size(IVec2::ZERO, IVec2::ONE); // w=2 h=2 /// assert_eq!(r.min, IVec2::splat(-1)); /// assert_eq!(r.max, IVec2::splat(1)); /// ``` #[inline] pub fn from_center_half_size(origin: IVec2, half_size: IVec2) -> Self { assert!( half_size.cmpge(IVec2::ZERO).all(), "IRect half_size must be positive" ); Self { min: origin - half_size, max: origin + half_size, } } /// Check if the rectangle is empty. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// let r = IRect::from_corners(IVec2::ZERO, IVec2::new(0, 1)); // w=0 h=1 /// assert!(r.is_empty()); /// ``` #[inline] pub fn is_empty(&self) -> bool { self.min.cmpge(self.max).any() } /// Rectangle width (max.x - min.x). /// /// # Examples /// /// ``` /// # use bevy_math::IRect; /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1 /// assert_eq!(r.width(), 5); /// ``` #[inline] pub fn width(&self) -> i32 { self.max.x - self.min.x } /// Rectangle height (max.y - min.y). /// /// # Examples /// /// ``` /// # use bevy_math::IRect; /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1 /// assert_eq!(r.height(), 1); /// ``` #[inline] pub fn height(&self) -> i32 { self.max.y - self.min.y } /// Rectangle size. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1 /// assert_eq!(r.size(), IVec2::new(5, 1)); /// ``` #[inline] pub fn size(&self) -> IVec2 { self.max - self.min } /// Rectangle half-size. /// /// # Rounding Behaviour /// /// If the full size contains odd numbers they will be rounded down to the nearest whole number when calculating the half size. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// let r = IRect::new(0, 0, 4, 3); // w=4 h=3 /// assert_eq!(r.half_size(), IVec2::new(2, 1)); /// ``` #[inline] pub fn half_size(&self) -> IVec2 { self.size() / 2 } /// The center point of the rectangle. /// /// # Rounding Behaviour /// /// If the (min + max) contains odd numbers they will be rounded down to the nearest whole number when calculating the center. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// let r = IRect::new(0, 0, 5, 2); // w=5 h=2 /// assert_eq!(r.center(), IVec2::new(2, 1)); /// ``` #[inline] pub fn center(&self) -> IVec2 { (self.min + self.max) / 2 } /// Check if a point lies within this rectangle, inclusive of its edges. /// /// # Examples /// /// ``` /// # use bevy_math::IRect; /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1 /// assert!(r.contains(r.center())); /// assert!(r.contains(r.min)); /// assert!(r.contains(r.max)); /// ``` #[inline] pub fn contains(&self, point: IVec2) -> bool { (point.cmpge(self.min) & point.cmple(self.max)).all() } /// Build a new rectangle formed of the union of this rectangle and another rectangle. /// /// The union is the smallest rectangle enclosing both rectangles. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// let r1 = IRect::new(0, 0, 5, 1); // w=5 h=1 /// let r2 = IRect::new(1, -1, 3, 3); // w=2 h=4 /// let r = r1.union(r2); /// assert_eq!(r.min, IVec2::new(0, -1)); /// assert_eq!(r.max, IVec2::new(5, 3)); /// ``` #[inline] pub fn union(&self, other: Self) -> Self { Self { min: self.min.min(other.min), max: self.max.max(other.max), } } /// Build a new rectangle formed of the union of this rectangle and a point. /// /// The union is the smallest rectangle enclosing both the rectangle and the point. If the /// point is already inside the rectangle, this method returns a copy of the rectangle. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1 /// let u = r.union_point(IVec2::new(3, 6)); /// assert_eq!(u.min, IVec2::ZERO); /// assert_eq!(u.max, IVec2::new(5, 6)); /// ``` #[inline] pub fn union_point(&self, other: IVec2) -> Self { Self { min: self.min.min(other), max: self.max.max(other), } } /// Build a new rectangle formed of the intersection of this rectangle and another rectangle. /// /// The intersection is the largest rectangle enclosed in both rectangles. If the intersection /// is empty, this method returns an empty rectangle ([`IRect::is_empty()`] returns `true`), but /// the actual values of [`IRect::min`] and [`IRect::max`] are implementation-dependent. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// let r1 = IRect::new(0, 0, 5, 1); // w=5 h=1 /// let r2 = IRect::new(1, -1, 3, 3); // w=2 h=4 /// let r = r1.intersect(r2); /// assert_eq!(r.min, IVec2::new(1, 0)); /// assert_eq!(r.max, IVec2::new(3, 1)); /// ``` #[inline] pub fn intersect(&self, other: Self) -> Self { let mut r = Self { min: self.min.max(other.min), max: self.max.min(other.max), }; // Collapse min over max to enforce invariants and ensure e.g. width() or // height() never return a negative value. r.min = r.min.min(r.max); r } /// Create a new rectangle with a constant inset. /// /// The inset is the extra border on all sides. A positive inset produces a larger rectangle, /// while a negative inset is allowed and produces a smaller rectangle. If the inset is negative /// and its absolute value is larger than the rectangle half-size, the created rectangle is empty. /// /// # Examples /// /// ``` /// # use bevy_math::{IRect, IVec2}; /// let r = IRect::new(0, 0, 5, 1); // w=5 h=1 /// let r2 = r.inset(3); // w=11 h=7 /// assert_eq!(r2.min, IVec2::splat(-3)); /// assert_eq!(r2.max, IVec2::new(8, 4)); /// /// let r = IRect::new(0, -1, 4, 3); // w=4 h=4 /// let r2 = r.inset(-1); // w=2 h=2 /// assert_eq!(r2.min, IVec2::new(1, 0)); /// assert_eq!(r2.max, IVec2::new(3, 2)); /// ``` #[inline] pub fn inset(&self, inset: i32) -> Self { let mut r = Self { min: self.min - inset, max: self.max + inset, }; // Collapse min over max to enforce invariants and ensure e.g. width() or // height() never return a negative value. r.min = r.min.min(r.max); r } /// Returns self as [`Rect`] (f32) #[inline] pub fn as_rect(&self) -> Rect { Rect::from_corners(self.min.as_vec2(), self.max.as_vec2()) } /// Returns self as [`URect`] (u32) #[inline] pub fn as_urect(&self) -> URect { URect::from_corners(self.min.as_uvec2(), self.max.as_uvec2()) } } #[cfg(test)] mod tests { use super::*; #[test] fn well_formed() { let r = IRect::from_center_size(IVec2::new(3, -5), IVec2::new(8, 12)); assert_eq!(r.min, IVec2::new(-1, -11)); assert_eq!(r.max, IVec2::new(7, 1)); assert_eq!(r.center(), IVec2::new(3, -5)); assert_eq!(r.width().abs(), 8); assert_eq!(r.height().abs(), 12); assert_eq!(r.size(), IVec2::new(8, 12)); assert_eq!(r.half_size(), IVec2::new(4, 6)); assert!(r.contains(IVec2::new(3, -5))); assert!(r.contains(IVec2::new(-1, -10))); assert!(r.contains(IVec2::new(-1, 0))); assert!(r.contains(IVec2::new(7, -10))); assert!(r.contains(IVec2::new(7, 0))); assert!(!r.contains(IVec2::new(50, -5))); } #[test] fn rect_union() { let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(4)); // [-2, -2] - [2, 2] // overlapping let r2 = IRect { min: IVec2::new(1, 1), max: IVec2::new(3, 3), }; let u = r.union(r2); assert_eq!(u.min, IVec2::new(-2, -2)); assert_eq!(u.max, IVec2::new(3, 3)); // disjoint let r2 = IRect { min: IVec2::new(1, 4), max: IVec2::new(4, 6), }; let u = r.union(r2); assert_eq!(u.min, IVec2::new(-2, -2)); assert_eq!(u.max, IVec2::new(4, 6)); // included let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(2)); let u = r.union(r2); assert_eq!(u.min, r.min); assert_eq!(u.max, r.max); // including let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(6)); let u = r.union(r2); assert_eq!(u.min, r2.min); assert_eq!(u.min, r2.min); } #[test] fn rect_union_pt() { let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(4)); // [-2,-2] - [2,2] // inside let v = IVec2::new(1, -1); let u = r.union_point(v); assert_eq!(u.min, r.min); assert_eq!(u.max, r.max); // outside let v = IVec2::new(10, -3); let u = r.union_point(v); assert_eq!(u.min, IVec2::new(-2, -3)); assert_eq!(u.max, IVec2::new(10, 2)); } #[test] fn rect_intersect() { let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(8)); // [-4,-4] - [4,4] // overlapping let r2 = IRect { min: IVec2::new(2, 2), max: IVec2::new(6, 6), }; let u = r.intersect(r2); assert_eq!(u.min, IVec2::new(2, 2)); assert_eq!(u.max, IVec2::new(4, 4)); // disjoint let r2 = IRect { min: IVec2::new(-8, -2), max: IVec2::new(-6, 2), }; let u = r.intersect(r2); assert!(u.is_empty()); assert_eq!(u.width(), 0); // included let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(2)); let u = r.intersect(r2); assert_eq!(u.min, r2.min); assert_eq!(u.max, r2.max); // including let r2 = IRect::from_center_size(IVec2::ZERO, IVec2::splat(10)); let u = r.intersect(r2); assert_eq!(u.min, r.min); assert_eq!(u.max, r.max); } #[test] fn rect_inset() { let r = IRect::from_center_size(IVec2::ZERO, IVec2::splat(4)); // [-2,-2] - [2,2] let r2 = r.inset(2); assert_eq!(r2.min, IVec2::new(-4, -4)); assert_eq!(r2.max, IVec2::new(4, 4)); } }