//! The generic axis type. use bevy_ecs::system::Resource; use bevy_utils::HashMap; use std::hash::Hash; /// Stores the position data of the input devices of type `T`. /// /// The values are stored as `f32`s, using [`Axis::set`]. /// Use [`Axis::get`] to retrieve the value clamped between [`Axis::MIN`] and [`Axis::MAX`] /// inclusive, or unclamped using [`Axis::get_unclamped`]. #[derive(Debug, Resource)] pub struct Axis { /// The position data of the input devices. axis_data: HashMap, } impl Default for Axis where T: Copy + Eq + Hash, { fn default() -> Self { Axis { axis_data: HashMap::default(), } } } impl Axis where T: Copy + Eq + Hash, { /// The smallest possible axis value. pub const MIN: f32 = -1.0; /// The largest possible axis value. pub const MAX: f32 = 1.0; /// Sets the position data of the `input_device` to `position_data`. /// /// If the `input_device`: /// - was present before, the position data is updated, and the old value is returned. /// - wasn't present before, `None` is returned. pub fn set(&mut self, input_device: T, position_data: f32) -> Option { self.axis_data.insert(input_device, position_data) } /// Returns the position data of the provided `input_device`. /// /// This will be clamped between [`Axis::MIN`] and [`Axis::MAX`] inclusive. pub fn get(&self, input_device: T) -> Option { self.axis_data .get(&input_device) .copied() .map(|value| value.clamp(Self::MIN, Self::MAX)) } /// Returns the unclamped position data of the provided `input_device`. /// /// This value may be outside of the [`Axis::MIN`] and [`Axis::MAX`] range. /// /// Use for things like camera zoom, where you want devices like mouse wheels to be able to /// exceed the normal range. If being able to move faster on one input device /// than another would give an unfair advantage, you should likely use [`Axis::get`] instead. pub fn get_unclamped(&self, input_device: T) -> Option { self.axis_data.get(&input_device).copied() } /// Removes the position data of the `input_device`, returning the position data if the input device was previously set. pub fn remove(&mut self, input_device: T) -> Option { self.axis_data.remove(&input_device) } /// Returns an iterator of all the input devices that have position data pub fn devices(&self) -> impl ExactSizeIterator { self.axis_data.keys() } } #[cfg(test)] mod tests { use crate::{ gamepad::{Gamepad, GamepadButton, GamepadButtonType}, Axis, }; #[test] fn test_axis_set() { let cases = [ (-1.5, Some(-1.0)), (-1.1, Some(-1.0)), (-1.0, Some(-1.0)), (-0.9, Some(-0.9)), (-0.1, Some(-0.1)), (0.0, Some(0.0)), (0.1, Some(0.1)), (0.9, Some(0.9)), (1.0, Some(1.0)), (1.1, Some(1.0)), (1.6, Some(1.0)), ]; for (value, expected) in cases { let gamepad_button = GamepadButton::new(Gamepad::new(1), GamepadButtonType::RightTrigger); let mut axis = Axis::::default(); axis.set(gamepad_button, value); let actual = axis.get(gamepad_button); assert_eq!(expected, actual); } } #[test] fn test_axis_remove() { let cases = [-1.0, -0.9, -0.1, 0.0, 0.1, 0.9, 1.0]; for value in cases { let gamepad_button = GamepadButton::new(Gamepad::new(1), GamepadButtonType::RightTrigger); let mut axis = Axis::::default(); axis.set(gamepad_button, value); assert!(axis.get(gamepad_button).is_some()); axis.remove(gamepad_button); let actual = axis.get(gamepad_button); let expected = None; assert_eq!(expected, actual); } } #[test] fn test_axis_devices() { let mut axis = Axis::::default(); assert_eq!(axis.devices().count(), 0); axis.set( GamepadButton::new(Gamepad::new(1), GamepadButtonType::RightTrigger), 0.1, ); assert_eq!(axis.devices().count(), 1); axis.set( GamepadButton::new(Gamepad::new(1), GamepadButtonType::LeftTrigger), 0.5, ); assert_eq!(axis.devices().count(), 2); axis.set( GamepadButton::new(Gamepad::new(1), GamepadButtonType::RightTrigger), -0.1, ); assert_eq!(axis.devices().count(), 2); axis.remove(GamepadButton::new( Gamepad::new(1), GamepadButtonType::RightTrigger, )); assert_eq!(axis.devices().count(), 1); } }