//! Simple benchmark to test rendering many point lights. //! Run with `WGPU_SETTINGS_PRIO=webgl2` to restrict to uniform buffers and max 256 lights. use std::f64::consts::PI; use bevy::{ diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin}, math::{DVec2, DVec3}, pbr::{ExtractedPointLight, GlobalLightMeta}, prelude::*, render::{camera::ScalingMode, Render, RenderApp, RenderSet}, window::{PresentMode, WindowPlugin}, }; use rand::{thread_rng, Rng}; fn main() { App::new() .add_plugins(DefaultPlugins.set(WindowPlugin { primary_window: Some(Window { resolution: (1024.0, 768.0).into(), title: "many_lights".into(), present_mode: PresentMode::AutoNoVsync, ..default() }), ..default() })) .add_plugin(FrameTimeDiagnosticsPlugin) .add_plugin(LogDiagnosticsPlugin::default()) .add_systems(Startup, setup) .add_systems(Update, (move_camera, print_light_count)) .add_plugin(LogVisibleLights) .run(); } fn setup( mut commands: Commands, mut meshes: ResMut>, mut materials: ResMut>, ) { warn!(include_str!("warning_string.txt")); const LIGHT_RADIUS: f32 = 0.3; const LIGHT_INTENSITY: f32 = 5.0; const RADIUS: f32 = 50.0; const N_LIGHTS: usize = 100_000; commands.spawn(PbrBundle { mesh: meshes.add( Mesh::try_from(shape::Icosphere { radius: RADIUS, subdivisions: 9, }) .unwrap(), ), material: materials.add(StandardMaterial::from(Color::WHITE)), transform: Transform::from_scale(Vec3::NEG_ONE), ..default() }); let mesh = meshes.add(Mesh::from(shape::Cube { size: 1.0 })); let material = materials.add(StandardMaterial { base_color: Color::PINK, ..default() }); // NOTE: This pattern is good for testing performance of culling as it provides roughly // the same number of visible meshes regardless of the viewing angle. // NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt()); let mut rng = thread_rng(); for i in 0..N_LIGHTS { let spherical_polar_theta_phi = fibonacci_spiral_on_sphere(golden_ratio, i, N_LIGHTS); let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi); commands.spawn(PointLightBundle { point_light: PointLight { range: LIGHT_RADIUS, intensity: LIGHT_INTENSITY, color: Color::hsl(rng.gen_range(0.0..360.0), 1.0, 0.5), ..default() }, transform: Transform::from_translation((RADIUS as f64 * unit_sphere_p).as_vec3()), ..default() }); } // camera match std::env::args().nth(1).as_deref() { Some("orthographic") => commands.spawn(Camera3dBundle { projection: OrthographicProjection { scale: 20.0, scaling_mode: ScalingMode::FixedHorizontal(1.0), ..default() } .into(), ..default() }), _ => commands.spawn(Camera3dBundle::default()), }; // add one cube, the only one with strong handles // also serves as a reference point during rotation commands.spawn(PbrBundle { mesh, material, transform: Transform { translation: Vec3::new(0.0, RADIUS, 0.0), scale: Vec3::splat(5.0), ..default() }, ..default() }); } // NOTE: This epsilon value is apparently optimal for optimizing for the average // nearest-neighbor distance. See: // http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/ // for details. const EPSILON: f64 = 0.36; fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 { DVec2::new( PI * 2. * (i as f64 / golden_ratio), (1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(), ) } fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 { let (sin_theta, cos_theta) = p.x.sin_cos(); let (sin_phi, cos_phi) = p.y.sin_cos(); DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi) } // System for rotating the camera fn move_camera(time: Res