#define_import_path bevy_pbr::shadows fn fetch_point_shadow(light_id: u32, frag_position: vec4, surface_normal: vec3) -> f32 { let light = point_lights.data[light_id]; // because the shadow maps align with the axes and the frustum planes are at 45 degrees // we can get the worldspace depth by taking the largest absolute axis let surface_to_light = light.position_radius.xyz - frag_position.xyz; let surface_to_light_abs = abs(surface_to_light); let distance_to_light = max(surface_to_light_abs.x, max(surface_to_light_abs.y, surface_to_light_abs.z)); // The normal bias here is already scaled by the texel size at 1 world unit from the light. // The texel size increases proportionally with distance from the light so multiplying by // distance to light scales the normal bias to the texel size at the fragment distance. let normal_offset = light.shadow_normal_bias * distance_to_light * surface_normal.xyz; let depth_offset = light.shadow_depth_bias * normalize(surface_to_light.xyz); let offset_position = frag_position.xyz + normal_offset + depth_offset; // similar largest-absolute-axis trick as above, but now with the offset fragment position let frag_ls = light.position_radius.xyz - offset_position.xyz; let abs_position_ls = abs(frag_ls); let major_axis_magnitude = max(abs_position_ls.x, max(abs_position_ls.y, abs_position_ls.z)); // NOTE: These simplifications come from multiplying: // projection * vec4(0, 0, -major_axis_magnitude, 1.0) // and keeping only the terms that have any impact on the depth. // Projection-agnostic approach: let zw = -major_axis_magnitude * light.projection_lr.xy + light.projection_lr.zw; let depth = zw.x / zw.y; // do the lookup, using HW PCF and comparison // NOTE: Due to the non-uniform control flow above, we must use the Level variant of // textureSampleCompare to avoid undefined behaviour due to some of the fragments in // a quad (2x2 fragments) being processed not being sampled, and this messing with // mip-mapping functionality. The shadow maps have no mipmaps so Level just samples // from LOD 0. #ifdef NO_ARRAY_TEXTURES_SUPPORT return textureSampleCompare(point_shadow_textures, point_shadow_textures_sampler, frag_ls, depth); #else return textureSampleCompareLevel(point_shadow_textures, point_shadow_textures_sampler, frag_ls, i32(light_id), depth); #endif } fn fetch_directional_shadow(light_id: u32, frag_position: vec4, surface_normal: vec3) -> f32 { let light = lights.directional_lights[light_id]; // The normal bias is scaled to the texel size. let normal_offset = light.shadow_normal_bias * surface_normal.xyz; let depth_offset = light.shadow_depth_bias * light.direction_to_light.xyz; let offset_position = vec4(frag_position.xyz + normal_offset + depth_offset, frag_position.w); let offset_position_clip = light.view_projection * offset_position; if (offset_position_clip.w <= 0.0) { return 1.0; } let offset_position_ndc = offset_position_clip.xyz / offset_position_clip.w; // No shadow outside the orthographic projection volume if (any(offset_position_ndc.xy < vec2(-1.0)) || offset_position_ndc.z < 0.0 || any(offset_position_ndc > vec3(1.0))) { return 1.0; } // compute texture coordinates for shadow lookup, compensating for the Y-flip difference // between the NDC and texture coordinates let flip_correction = vec2(0.5, -0.5); let light_local = offset_position_ndc.xy * flip_correction + vec2(0.5, 0.5); let depth = offset_position_ndc.z; // do the lookup, using HW PCF and comparison // NOTE: Due to non-uniform control flow above, we must use the level variant of the texture // sampler to avoid use of implicit derivatives causing possible undefined behavior. #ifdef NO_ARRAY_TEXTURES_SUPPORT return textureSampleCompareLevel(directional_shadow_textures, directional_shadow_textures_sampler, light_local, depth); #else return textureSampleCompareLevel(directional_shadow_textures, directional_shadow_textures_sampler, light_local, i32(light_id), depth); #endif }