use crate::util; use bevy_color::{ClampColor, Laba, LinearRgba, Oklaba, Srgba, Xyza}; use bevy_ecs::world::World; use bevy_math::*; use bevy_reflect::Reflect; use bevy_transform::prelude::Transform; /// An individual input for [`Animatable::blend`]. pub struct BlendInput { /// The individual item's weight. This may not be bound to the range `[0.0, 1.0]`. pub weight: f32, /// The input value to be blended. pub value: T, /// Whether or not to additively blend this input into the final result. pub additive: bool, } /// An animatable value type. pub trait Animatable: Reflect + Sized + Send + Sync + 'static { /// Interpolates between `a` and `b` with a interpolation factor of `time`. /// /// The `time` parameter here may not be clamped to the range `[0.0, 1.0]`. fn interpolate(a: &Self, b: &Self, time: f32) -> Self; /// Blends one or more values together. /// /// Implementors should return a default value when no inputs are provided here. fn blend(inputs: impl Iterator>) -> Self; /// Post-processes the value using resources in the [`World`]. /// Most animatable types do not need to implement this. fn post_process(&mut self, _world: &World) {} } macro_rules! impl_float_animatable { ($ty: ty, $base: ty) => { impl Animatable for $ty { #[inline] fn interpolate(a: &Self, b: &Self, t: f32) -> Self { let t = <$base>::from(t); (*a) * (1.0 - t) + (*b) * t } #[inline] fn blend(inputs: impl Iterator>) -> Self { let mut value = Default::default(); for input in inputs { if input.additive { value += <$base>::from(input.weight) * input.value; } else { value = Self::interpolate(&value, &input.value, input.weight); } } value } } }; } macro_rules! impl_color_animatable { ($ty: ident) => { impl Animatable for $ty { #[inline] fn interpolate(a: &Self, b: &Self, t: f32) -> Self { let value = *a * (1. - t) + *b * t; value.clamped() } #[inline] fn blend(inputs: impl Iterator>) -> Self { let mut value = Default::default(); for input in inputs { if input.additive { value += input.weight * input.value; } else { value = Self::interpolate(&value, &input.value, input.weight); } } value.clamped() } } }; } impl_float_animatable!(f32, f32); impl_float_animatable!(Vec2, f32); impl_float_animatable!(Vec3A, f32); impl_float_animatable!(Vec4, f32); impl_float_animatable!(f64, f64); impl_float_animatable!(DVec2, f64); impl_float_animatable!(DVec3, f64); impl_float_animatable!(DVec4, f64); impl_color_animatable!(LinearRgba); impl_color_animatable!(Laba); impl_color_animatable!(Oklaba); impl_color_animatable!(Srgba); impl_color_animatable!(Xyza); // Vec3 is special cased to use Vec3A internally for blending impl Animatable for Vec3 { #[inline] fn interpolate(a: &Self, b: &Self, t: f32) -> Self { (*a) * (1.0 - t) + (*b) * t } #[inline] fn blend(inputs: impl Iterator>) -> Self { let mut value = Vec3A::ZERO; for input in inputs { if input.additive { value += input.weight * Vec3A::from(input.value); } else { value = Vec3A::interpolate(&value, &Vec3A::from(input.value), input.weight); } } Self::from(value) } } impl Animatable for bool { #[inline] fn interpolate(a: &Self, b: &Self, t: f32) -> Self { util::step_unclamped(*a, *b, t) } #[inline] fn blend(inputs: impl Iterator>) -> Self { inputs .max_by(|a, b| FloatOrd(a.weight).cmp(&FloatOrd(b.weight))) .map(|input| input.value) .unwrap_or(false) } } impl Animatable for Transform { fn interpolate(a: &Self, b: &Self, t: f32) -> Self { Self { translation: Vec3::interpolate(&a.translation, &b.translation, t), rotation: Quat::interpolate(&a.rotation, &b.rotation, t), scale: Vec3::interpolate(&a.scale, &b.scale, t), } } fn blend(inputs: impl Iterator>) -> Self { let mut translation = Vec3A::ZERO; let mut scale = Vec3A::ZERO; let mut rotation = Quat::IDENTITY; for input in inputs { if input.additive { translation += input.weight * Vec3A::from(input.value.translation); scale += input.weight * Vec3A::from(input.value.scale); rotation = rotation.slerp(input.value.rotation, input.weight); } else { translation = Vec3A::interpolate( &translation, &Vec3A::from(input.value.translation), input.weight, ); scale = Vec3A::interpolate(&scale, &Vec3A::from(input.value.scale), input.weight); rotation = Quat::interpolate(&rotation, &input.value.rotation, input.weight); } } Self { translation: Vec3::from(translation), rotation, scale: Vec3::from(scale), } } } impl Animatable for Quat { /// Performs a slerp to smoothly interpolate between quaternions. #[inline] fn interpolate(a: &Self, b: &Self, t: f32) -> Self { // We want to smoothly interpolate between the two quaternions by default, // rather than using a quicker but less correct linear interpolation. a.slerp(*b, t) } #[inline] fn blend(inputs: impl Iterator>) -> Self { let mut value = Self::IDENTITY; for input in inputs { value = Self::interpolate(&value, &input.value, input.weight); } value } }