#define_import_path bevy_render::maths fn affine2_to_square(affine: mat3x2) -> mat3x3 { return mat3x3( vec3(affine[0].xy, 0.0), vec3(affine[1].xy, 0.0), vec3(affine[2].xy, 1.0), ); } fn affine3_to_square(affine: mat3x4) -> mat4x4 { return transpose(mat4x4( affine[0], affine[1], affine[2], vec4(0.0, 0.0, 0.0, 1.0), )); } fn mat2x4_f32_to_mat3x3_unpack( a: mat2x4, b: f32, ) -> mat3x3 { return mat3x3( a[0].xyz, vec3(a[0].w, a[1].xy), vec3(a[1].zw, b), ); } // Extracts the square portion of an affine matrix: i.e. discards the // translation. fn affine3_to_mat3x3(affine: mat4x3) -> mat3x3 { return mat3x3(affine[0].xyz, affine[1].xyz, affine[2].xyz); } // Returns the inverse of a 3x3 matrix. fn inverse_mat3x3(matrix: mat3x3) -> mat3x3 { let tmp0 = cross(matrix[1], matrix[2]); let tmp1 = cross(matrix[2], matrix[0]); let tmp2 = cross(matrix[0], matrix[1]); let inv_det = 1.0 / dot(matrix[2], tmp2); return transpose(mat3x3(tmp0 * inv_det, tmp1 * inv_det, tmp2 * inv_det)); } // Returns the inverse of an affine matrix. // // https://en.wikipedia.org/wiki/Affine_transformation#Groups fn inverse_affine3(affine: mat4x3) -> mat4x3 { let matrix3 = affine3_to_mat3x3(affine); let inv_matrix3 = inverse_mat3x3(matrix3); return mat4x3(inv_matrix3[0], inv_matrix3[1], inv_matrix3[2], -(inv_matrix3 * affine[3])); } // Creates an orthonormal basis given a Z vector and an up vector (which becomes // Y after orthonormalization). // // The results are equivalent to the Gram-Schmidt process [1]. // // [1]: https://math.stackexchange.com/a/1849294 fn orthonormalize(z_unnormalized: vec3, up: vec3) -> mat3x3 { let z_basis = normalize(z_unnormalized); let x_basis = normalize(cross(z_basis, up)); let y_basis = cross(z_basis, x_basis); return mat3x3(x_basis, y_basis, z_basis); }