//! Shows how to iterate over combinations of query results. use bevy::{pbr::AmbientLight, prelude::*, render::camera::Camera, time::FixedTimestep}; use rand::{thread_rng, Rng}; #[derive(Debug, Hash, PartialEq, Eq, Clone, StageLabel)] struct FixedUpdateStage; const DELTA_TIME: f64 = 0.01; fn main() { App::new() .add_plugins(DefaultPlugins) .insert_resource(AmbientLight { brightness: 0.03, ..default() }) .add_startup_system(generate_bodies) .add_stage_after( CoreStage::Update, FixedUpdateStage, SystemStage::parallel() .with_run_criteria(FixedTimestep::step(DELTA_TIME)) .with_system(interact_bodies) .with_system(integrate), ) .add_system(look_at_star) .insert_resource(ClearColor(Color::BLACK)) .run(); } const GRAVITY_CONSTANT: f32 = 0.001; const NUM_BODIES: usize = 100; #[derive(Component, Default)] struct Mass(f32); #[derive(Component, Default)] struct Acceleration(Vec3); #[derive(Component, Default)] struct LastPos(Vec3); #[derive(Component)] struct Star; #[derive(Bundle, Default)] struct BodyBundle { #[bundle] pbr: PbrBundle, mass: Mass, last_pos: LastPos, acceleration: Acceleration, } fn generate_bodies( mut commands: Commands, mut meshes: ResMut>, mut materials: ResMut>, ) { let mesh = meshes.add(Mesh::from(shape::Icosphere { radius: 1.0, subdivisions: 3, })); let color_range = 0.5..1.0; let vel_range = -0.5..0.5; let mut rng = thread_rng(); for _ in 0..NUM_BODIES { let radius: f32 = rng.gen_range(0.1..0.7); let mass_value = radius.powi(3) * 10.; let position = Vec3::new( rng.gen_range(-1.0..1.0), rng.gen_range(-1.0..1.0), rng.gen_range(-1.0..1.0), ) .normalize() * rng.gen_range(0.2f32..1.0).powf(1. / 3.) * 15.; commands.spawn_bundle(BodyBundle { pbr: PbrBundle { transform: Transform { translation: position, scale: Vec3::splat(radius), ..default() }, mesh: mesh.clone(), material: materials.add( Color::rgb( rng.gen_range(color_range.clone()), rng.gen_range(color_range.clone()), rng.gen_range(color_range.clone()), ) .into(), ), ..default() }, mass: Mass(mass_value), acceleration: Acceleration(Vec3::ZERO), last_pos: LastPos( position - Vec3::new( rng.gen_range(vel_range.clone()), rng.gen_range(vel_range.clone()), rng.gen_range(vel_range.clone()), ) * DELTA_TIME as f32, ), }); } // add bigger "star" body in the center let star_radius = 1.; commands .spawn_bundle(BodyBundle { pbr: PbrBundle { transform: Transform::from_scale(Vec3::splat(star_radius)), mesh: meshes.add(Mesh::from(shape::Icosphere { radius: 1.0, subdivisions: 5, })), material: materials.add(StandardMaterial { base_color: Color::ORANGE_RED, emissive: (Color::ORANGE_RED * 2.), ..default() }), ..default() }, mass: Mass(500.0), ..default() }) .insert(Star) .with_children(|p| { p.spawn_bundle(PointLightBundle { point_light: PointLight { color: Color::WHITE, intensity: 400.0, range: 100.0, radius: star_radius, ..default() }, ..default() }); }); commands.spawn_bundle(Camera3dBundle { transform: Transform::from_xyz(0.0, 10.5, -30.0).looking_at(Vec3::ZERO, Vec3::Y), ..default() }); } fn interact_bodies(mut query: Query<(&Mass, &GlobalTransform, &mut Acceleration)>) { let mut iter = query.iter_combinations_mut(); while let Some([(Mass(m1), transform1, mut acc1), (Mass(m2), transform2, mut acc2)]) = iter.fetch_next() { let delta = transform2.translation - transform1.translation; let distance_sq: f32 = delta.length_squared(); let f = GRAVITY_CONSTANT / distance_sq; let force_unit_mass = delta * f; acc1.0 += force_unit_mass * *m2; acc2.0 -= force_unit_mass * *m1; } } fn integrate(mut query: Query<(&mut Acceleration, &mut Transform, &mut LastPos)>) { let dt_sq = (DELTA_TIME * DELTA_TIME) as f32; for (mut acceleration, mut transform, mut last_pos) in &mut query { // verlet integration // x(t+dt) = 2x(t) - x(t-dt) + a(t)dt^2 + O(dt^4) let new_pos = transform.translation + transform.translation - last_pos.0 + acceleration.0 * dt_sq; acceleration.0 = Vec3::ZERO; last_pos.0 = transform.translation; transform.translation = new_pos; } } fn look_at_star( mut camera: Query<&mut Transform, (With, Without)>, star: Query<&Transform, With>, ) { let mut camera = camera.single_mut(); let star = star.single(); let new_rotation = camera .looking_at(star.translation, Vec3::Y) .rotation .lerp(camera.rotation, 0.1); camera.rotation = new_rotation; }