use crate::{ GlobalLightMeta, GpuLights, GpuPointLights, LightMeta, NotShadowCaster, NotShadowReceiver, ShadowPipeline, ViewClusterBindings, ViewLightsUniformOffset, ViewShadowBindings, CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT, }; use bevy_app::Plugin; use bevy_asset::{load_internal_asset, Assets, Handle, HandleUntyped}; use bevy_ecs::{ prelude::*, system::{lifetimeless::*, SystemParamItem, SystemState}, }; use bevy_math::{Mat4, Vec2}; use bevy_reflect::TypeUuid; use bevy_render::{ extract_component::{ComponentUniforms, DynamicUniformIndex, UniformComponentPlugin}, mesh::{ skinning::{SkinnedMesh, SkinnedMeshInverseBindposes}, GpuBufferInfo, Mesh, MeshVertexBufferLayout, }, render_asset::RenderAssets, render_phase::{EntityRenderCommand, RenderCommandResult, TrackedRenderPass}, render_resource::*, renderer::{RenderDevice, RenderQueue}, texture::{ BevyDefault, DefaultImageSampler, GpuImage, Image, ImageSampler, TextureFormatPixelInfo, }, view::{ComputedVisibility, ViewUniform, ViewUniformOffset, ViewUniforms}, RenderApp, RenderStage, }; use bevy_transform::components::GlobalTransform; use std::num::NonZeroU64; #[derive(Default)] pub struct MeshRenderPlugin; const MAX_JOINTS: usize = 256; const JOINT_SIZE: usize = std::mem::size_of::(); pub(crate) const JOINT_BUFFER_SIZE: usize = MAX_JOINTS * JOINT_SIZE; pub const MESH_VIEW_TYPES_HANDLE: HandleUntyped = HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 8140454348013264787); pub const MESH_VIEW_BINDINGS_HANDLE: HandleUntyped = HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 9076678235888822571); pub const MESH_TYPES_HANDLE: HandleUntyped = HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 2506024101911992377); pub const MESH_BINDINGS_HANDLE: HandleUntyped = HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 16831548636314682308); pub const MESH_SHADER_HANDLE: HandleUntyped = HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 3252377289100772450); pub const SKINNING_HANDLE: HandleUntyped = HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 13215291596265391738); impl Plugin for MeshRenderPlugin { fn build(&self, app: &mut bevy_app::App) { load_internal_asset!( app, MESH_VIEW_TYPES_HANDLE, "mesh_view_types.wgsl", Shader::from_wgsl ); load_internal_asset!( app, MESH_VIEW_BINDINGS_HANDLE, "mesh_view_bindings.wgsl", Shader::from_wgsl ); load_internal_asset!(app, MESH_TYPES_HANDLE, "mesh_types.wgsl", Shader::from_wgsl); load_internal_asset!( app, MESH_BINDINGS_HANDLE, "mesh_bindings.wgsl", Shader::from_wgsl ); load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl); load_internal_asset!(app, SKINNING_HANDLE, "skinning.wgsl", Shader::from_wgsl); app.add_plugin(UniformComponentPlugin::::default()); if let Ok(render_app) = app.get_sub_app_mut(RenderApp) { render_app .init_resource::() .init_resource::() .add_system_to_stage(RenderStage::Extract, extract_meshes) .add_system_to_stage(RenderStage::Extract, extract_skinned_meshes) .add_system_to_stage(RenderStage::Prepare, prepare_skinned_meshes) .add_system_to_stage(RenderStage::Queue, queue_mesh_bind_group) .add_system_to_stage(RenderStage::Queue, queue_mesh_view_bind_groups); } } } #[derive(Component, ShaderType, Clone)] pub struct MeshUniform { pub transform: Mat4, pub inverse_transpose_model: Mat4, pub flags: u32, } // NOTE: These must match the bit flags in bevy_pbr2/src/render/mesh.wgsl! bitflags::bitflags! { #[repr(transparent)] struct MeshFlags: u32 { const SHADOW_RECEIVER = (1 << 0); const NONE = 0; const UNINITIALIZED = 0xFFFF; } } pub fn extract_meshes( mut commands: Commands, mut previous_caster_len: Local, mut previous_not_caster_len: Local, caster_query: Query< ( Entity, &ComputedVisibility, &GlobalTransform, &Handle, Option<&NotShadowReceiver>, ), Without, >, not_caster_query: Query< ( Entity, &ComputedVisibility, &GlobalTransform, &Handle, Option<&NotShadowReceiver>, ), With, >, ) { let mut caster_values = Vec::with_capacity(*previous_caster_len); for (entity, computed_visibility, transform, handle, not_receiver) in caster_query.iter() { if !computed_visibility.is_visible { continue; } let transform = transform.compute_matrix(); caster_values.push(( entity, ( handle.clone_weak(), MeshUniform { flags: if not_receiver.is_some() { MeshFlags::empty().bits } else { MeshFlags::SHADOW_RECEIVER.bits }, transform, inverse_transpose_model: transform.inverse().transpose(), }, ), )); } *previous_caster_len = caster_values.len(); commands.insert_or_spawn_batch(caster_values); let mut not_caster_values = Vec::with_capacity(*previous_not_caster_len); for (entity, computed_visibility, transform, mesh, not_receiver) in not_caster_query.iter() { if !computed_visibility.is_visible { continue; } let transform = transform.compute_matrix(); not_caster_values.push(( entity, ( mesh.clone_weak(), MeshUniform { flags: if not_receiver.is_some() { MeshFlags::empty().bits } else { MeshFlags::SHADOW_RECEIVER.bits }, transform, inverse_transpose_model: transform.inverse().transpose(), }, NotShadowCaster, ), )); } *previous_not_caster_len = not_caster_values.len(); commands.insert_or_spawn_batch(not_caster_values); } #[derive(Debug, Default)] pub struct ExtractedJoints { pub buffer: Vec, } #[derive(Component)] pub struct SkinnedMeshJoints { pub index: u32, } impl SkinnedMeshJoints { #[inline] pub fn build( skin: &SkinnedMesh, inverse_bindposes: &Assets, joints: &Query<&GlobalTransform>, buffer: &mut Vec, ) -> Option { let inverse_bindposes = inverse_bindposes.get(&skin.inverse_bindposes)?; let bindposes = inverse_bindposes.iter(); let skin_joints = skin.joints.iter(); let start = buffer.len(); for (inverse_bindpose, joint) in bindposes.zip(skin_joints).take(MAX_JOINTS) { if let Ok(joint) = joints.get(*joint) { buffer.push(joint.compute_affine() * *inverse_bindpose); } else { buffer.truncate(start); return None; } } // Pad to 256 byte alignment while buffer.len() % 4 != 0 { buffer.push(Mat4::ZERO); } Some(Self { index: start as u32, }) } pub fn to_buffer_index(mut self) -> Self { self.index *= std::mem::size_of::() as u32; self } } pub fn extract_skinned_meshes( query: Query<(Entity, &ComputedVisibility, &SkinnedMesh)>, inverse_bindposes: Res>, joint_query: Query<&GlobalTransform>, mut commands: Commands, mut previous_len: Local, mut previous_joint_len: Local, ) { let mut values = Vec::with_capacity(*previous_len); let mut joints = Vec::with_capacity(*previous_joint_len); let mut last_start = 0; for (entity, computed_visibility, skin) in query.iter() { if !computed_visibility.is_visible { continue; } // PERF: This can be expensive, can we move this to prepare? if let Some(skinned_joints) = SkinnedMeshJoints::build(skin, &inverse_bindposes, &joint_query, &mut joints) { last_start = last_start.max(skinned_joints.index as usize); values.push((entity, (skinned_joints.to_buffer_index(),))); } } // Pad out the buffer to ensure that there's enough space for bindings while joints.len() - last_start < MAX_JOINTS { joints.push(Mat4::ZERO); } *previous_len = values.len(); *previous_joint_len = joints.len(); commands.insert_resource(ExtractedJoints { buffer: joints }); commands.insert_or_spawn_batch(values); } #[derive(Clone)] pub struct MeshPipeline { pub view_layout: BindGroupLayout, pub mesh_layout: BindGroupLayout, pub skinned_mesh_layout: BindGroupLayout, // This dummy white texture is to be used in place of optional StandardMaterial textures pub dummy_white_gpu_image: GpuImage, pub clustered_forward_buffer_binding_type: BufferBindingType, } impl FromWorld for MeshPipeline { fn from_world(world: &mut World) -> Self { let mut system_state: SystemState<( Res, Res, Res, )> = SystemState::new(world); let (render_device, default_sampler, render_queue) = system_state.get_mut(world); let clustered_forward_buffer_binding_type = render_device .get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT); let view_layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[ // View BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::VERTEX | ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: true, min_binding_size: Some(ViewUniform::min_size()), }, count: None, }, // Lights BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: true, min_binding_size: Some(GpuLights::min_size()), }, count: None, }, // Point Shadow Texture Cube Array BindGroupLayoutEntry { binding: 2, visibility: ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, sample_type: TextureSampleType::Depth, #[cfg(not(feature = "webgl"))] view_dimension: TextureViewDimension::CubeArray, #[cfg(feature = "webgl")] view_dimension: TextureViewDimension::Cube, }, count: None, }, // Point Shadow Texture Array Sampler BindGroupLayoutEntry { binding: 3, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Comparison), count: None, }, // Directional Shadow Texture Array BindGroupLayoutEntry { binding: 4, visibility: ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, sample_type: TextureSampleType::Depth, #[cfg(not(feature = "webgl"))] view_dimension: TextureViewDimension::D2Array, #[cfg(feature = "webgl")] view_dimension: TextureViewDimension::D2, }, count: None, }, // Directional Shadow Texture Array Sampler BindGroupLayoutEntry { binding: 5, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Comparison), count: None, }, // PointLights BindGroupLayoutEntry { binding: 6, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: clustered_forward_buffer_binding_type, has_dynamic_offset: false, min_binding_size: Some(GpuPointLights::min_size( clustered_forward_buffer_binding_type, )), }, count: None, }, // ClusteredLightIndexLists BindGroupLayoutEntry { binding: 7, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: clustered_forward_buffer_binding_type, has_dynamic_offset: false, min_binding_size: Some( ViewClusterBindings::min_size_cluster_light_index_lists( clustered_forward_buffer_binding_type, ), ), }, count: None, }, // ClusterOffsetsAndCounts BindGroupLayoutEntry { binding: 8, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: clustered_forward_buffer_binding_type, has_dynamic_offset: false, min_binding_size: Some( ViewClusterBindings::min_size_cluster_offsets_and_counts( clustered_forward_buffer_binding_type, ), ), }, count: None, }, ], label: Some("mesh_view_layout"), }); let mesh_binding = BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::VERTEX | ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: true, min_binding_size: Some(MeshUniform::min_size()), }, count: None, }; let mesh_layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[mesh_binding], label: Some("mesh_layout"), }); let skinned_mesh_layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[ mesh_binding, BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::VERTEX, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: true, min_binding_size: BufferSize::new(JOINT_BUFFER_SIZE as u64), }, count: None, }, ], label: Some("skinned_mesh_layout"), }); // A 1x1x1 'all 1.0' texture to use as a dummy texture to use in place of optional StandardMaterial textures let dummy_white_gpu_image = { let image = Image::new_fill( Extent3d::default(), TextureDimension::D2, &[255u8; 4], TextureFormat::bevy_default(), ); let texture = render_device.create_texture(&image.texture_descriptor); let sampler = match image.sampler_descriptor { ImageSampler::Default => (**default_sampler).clone(), ImageSampler::Descriptor(descriptor) => render_device.create_sampler(&descriptor), }; let format_size = image.texture_descriptor.format.pixel_size(); render_queue.write_texture( ImageCopyTexture { texture: &texture, mip_level: 0, origin: Origin3d::ZERO, aspect: TextureAspect::All, }, &image.data, ImageDataLayout { offset: 0, bytes_per_row: Some( std::num::NonZeroU32::new( image.texture_descriptor.size.width * format_size as u32, ) .unwrap(), ), rows_per_image: None, }, image.texture_descriptor.size, ); let texture_view = texture.create_view(&TextureViewDescriptor::default()); GpuImage { texture, texture_view, texture_format: image.texture_descriptor.format, sampler, size: Vec2::new( image.texture_descriptor.size.width as f32, image.texture_descriptor.size.height as f32, ), } }; MeshPipeline { view_layout, mesh_layout, skinned_mesh_layout, clustered_forward_buffer_binding_type, dummy_white_gpu_image, } } } impl MeshPipeline { pub fn get_image_texture<'a>( &'a self, gpu_images: &'a RenderAssets, handle_option: &Option>, ) -> Option<(&'a TextureView, &'a Sampler)> { if let Some(handle) = handle_option { let gpu_image = gpu_images.get(handle)?; Some((&gpu_image.texture_view, &gpu_image.sampler)) } else { Some(( &self.dummy_white_gpu_image.texture_view, &self.dummy_white_gpu_image.sampler, )) } } } bitflags::bitflags! { #[repr(transparent)] // NOTE: Apparently quadro drivers support up to 64x MSAA. /// MSAA uses the highest 6 bits for the MSAA sample count - 1 to support up to 64x MSAA. pub struct MeshPipelineKey: u32 { const NONE = 0; const TRANSPARENT_MAIN_PASS = (1 << 0); const MSAA_RESERVED_BITS = MeshPipelineKey::MSAA_MASK_BITS << MeshPipelineKey::MSAA_SHIFT_BITS; const PRIMITIVE_TOPOLOGY_RESERVED_BITS = MeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS << MeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS; } } impl MeshPipelineKey { const MSAA_MASK_BITS: u32 = 0b111111; const MSAA_SHIFT_BITS: u32 = 32 - 6; const PRIMITIVE_TOPOLOGY_MASK_BITS: u32 = 0b111; const PRIMITIVE_TOPOLOGY_SHIFT_BITS: u32 = Self::MSAA_SHIFT_BITS - 3; pub fn from_msaa_samples(msaa_samples: u32) -> Self { let msaa_bits = ((msaa_samples - 1) & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS; MeshPipelineKey::from_bits(msaa_bits).unwrap() } pub fn msaa_samples(&self) -> u32 { ((self.bits >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS) + 1 } pub fn from_primitive_topology(primitive_topology: PrimitiveTopology) -> Self { let primitive_topology_bits = ((primitive_topology as u32) & Self::PRIMITIVE_TOPOLOGY_MASK_BITS) << Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS; MeshPipelineKey::from_bits(primitive_topology_bits).unwrap() } pub fn primitive_topology(&self) -> PrimitiveTopology { let primitive_topology_bits = (self.bits >> Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS) & Self::PRIMITIVE_TOPOLOGY_MASK_BITS; match primitive_topology_bits { x if x == PrimitiveTopology::PointList as u32 => PrimitiveTopology::PointList, x if x == PrimitiveTopology::LineList as u32 => PrimitiveTopology::LineList, x if x == PrimitiveTopology::LineStrip as u32 => PrimitiveTopology::LineStrip, x if x == PrimitiveTopology::TriangleList as u32 => PrimitiveTopology::TriangleList, x if x == PrimitiveTopology::TriangleStrip as u32 => PrimitiveTopology::TriangleStrip, _ => PrimitiveTopology::default(), } } } impl SpecializedMeshPipeline for MeshPipeline { type Key = MeshPipelineKey; fn specialize( &self, key: Self::Key, layout: &MeshVertexBufferLayout, ) -> Result { let mut vertex_attributes = vec![ Mesh::ATTRIBUTE_POSITION.at_shader_location(0), Mesh::ATTRIBUTE_NORMAL.at_shader_location(1), Mesh::ATTRIBUTE_UV_0.at_shader_location(2), ]; let mut shader_defs = Vec::new(); if layout.contains(Mesh::ATTRIBUTE_TANGENT) { shader_defs.push(String::from("VERTEX_TANGENTS")); vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3)); } if layout.contains(Mesh::ATTRIBUTE_COLOR) { shader_defs.push(String::from("VERTEX_COLORS")); vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(4)); } let mut bind_group_layout = vec![self.view_layout.clone()]; if layout.contains(Mesh::ATTRIBUTE_JOINT_INDEX) && layout.contains(Mesh::ATTRIBUTE_JOINT_WEIGHT) { shader_defs.push(String::from("SKINNED")); vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_INDEX.at_shader_location(5)); vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_WEIGHT.at_shader_location(6)); bind_group_layout.push(self.skinned_mesh_layout.clone()); } else { bind_group_layout.push(self.mesh_layout.clone()); }; let vertex_buffer_layout = layout.get_layout(&vertex_attributes)?; let (label, blend, depth_write_enabled); if key.contains(MeshPipelineKey::TRANSPARENT_MAIN_PASS) { label = "transparent_mesh_pipeline".into(); blend = Some(BlendState::ALPHA_BLENDING); // For the transparent pass, fragments that are closer will be alpha blended // but their depth is not written to the depth buffer depth_write_enabled = false; } else { label = "opaque_mesh_pipeline".into(); blend = Some(BlendState::REPLACE); // For the opaque and alpha mask passes, fragments that are closer will replace // the current fragment value in the output and the depth is written to the // depth buffer depth_write_enabled = true; } Ok(RenderPipelineDescriptor { vertex: VertexState { shader: MESH_SHADER_HANDLE.typed::(), entry_point: "vertex".into(), shader_defs: shader_defs.clone(), buffers: vec![vertex_buffer_layout], }, fragment: Some(FragmentState { shader: MESH_SHADER_HANDLE.typed::(), shader_defs, entry_point: "fragment".into(), targets: vec![ColorTargetState { format: TextureFormat::bevy_default(), blend, write_mask: ColorWrites::ALL, }], }), layout: Some(bind_group_layout), primitive: PrimitiveState { front_face: FrontFace::Ccw, cull_mode: Some(Face::Back), unclipped_depth: false, polygon_mode: PolygonMode::Fill, conservative: false, topology: key.primitive_topology(), strip_index_format: None, }, depth_stencil: Some(DepthStencilState { format: TextureFormat::Depth32Float, depth_write_enabled, depth_compare: CompareFunction::Greater, stencil: StencilState { front: StencilFaceState::IGNORE, back: StencilFaceState::IGNORE, read_mask: 0, write_mask: 0, }, bias: DepthBiasState { constant: 0, slope_scale: 0.0, clamp: 0.0, }, }), multisample: MultisampleState { count: key.msaa_samples(), mask: !0, alpha_to_coverage_enabled: false, }, label: Some(label), }) } } pub struct MeshBindGroup { pub normal: BindGroup, pub skinned: Option, } pub fn queue_mesh_bind_group( mut commands: Commands, mesh_pipeline: Res, render_device: Res, mesh_uniforms: Res>, skinned_mesh_uniform: Res, ) { if let Some(mesh_binding) = mesh_uniforms.uniforms().binding() { let mut mesh_bind_group = MeshBindGroup { normal: render_device.create_bind_group(&BindGroupDescriptor { entries: &[BindGroupEntry { binding: 0, resource: mesh_binding.clone(), }], label: Some("mesh_bind_group"), layout: &mesh_pipeline.mesh_layout, }), skinned: None, }; if let Some(skinned_joints_buffer) = skinned_mesh_uniform.buffer.buffer() { mesh_bind_group.skinned = Some(render_device.create_bind_group(&BindGroupDescriptor { entries: &[ BindGroupEntry { binding: 0, resource: mesh_binding, }, BindGroupEntry { binding: 1, resource: BindingResource::Buffer(BufferBinding { buffer: skinned_joints_buffer, offset: 0, size: Some(NonZeroU64::new(JOINT_BUFFER_SIZE as u64).unwrap()), }), }, ], label: Some("skinned_mesh_bind_group"), layout: &mesh_pipeline.skinned_mesh_layout, })); } commands.insert_resource(mesh_bind_group); } } // NOTE: This is using BufferVec because it is using a trick to allow a fixed-size array // in a uniform buffer to be used like a variable-sized array by only writing the valid data // into the buffer, knowing the number of valid items starting from the dynamic offset, and // ignoring the rest, whether they're valid for other dynamic offsets or not. This trick may // be supported later in encase, and then we should make use of it. pub struct SkinnedMeshUniform { pub buffer: BufferVec, } impl Default for SkinnedMeshUniform { fn default() -> Self { Self { buffer: BufferVec::new(BufferUsages::UNIFORM), } } } pub fn prepare_skinned_meshes( render_device: Res, render_queue: Res, extracted_joints: Res, mut skinned_mesh_uniform: ResMut, ) { if extracted_joints.buffer.is_empty() { return; } skinned_mesh_uniform.buffer.clear(); skinned_mesh_uniform .buffer .reserve(extracted_joints.buffer.len(), &render_device); for joint in &extracted_joints.buffer { skinned_mesh_uniform.buffer.push(*joint); } skinned_mesh_uniform .buffer .write_buffer(&render_device, &render_queue); } #[derive(Component)] pub struct MeshViewBindGroup { pub value: BindGroup, } #[allow(clippy::too_many_arguments)] pub fn queue_mesh_view_bind_groups( mut commands: Commands, render_device: Res, mesh_pipeline: Res, shadow_pipeline: Res, light_meta: Res, global_light_meta: Res, view_uniforms: Res, views: Query<(Entity, &ViewShadowBindings, &ViewClusterBindings)>, ) { if let (Some(view_binding), Some(light_binding), Some(point_light_binding)) = ( view_uniforms.uniforms.binding(), light_meta.view_gpu_lights.binding(), global_light_meta.gpu_point_lights.binding(), ) { for (entity, view_shadow_bindings, view_cluster_bindings) in views.iter() { let view_bind_group = render_device.create_bind_group(&BindGroupDescriptor { entries: &[ BindGroupEntry { binding: 0, resource: view_binding.clone(), }, BindGroupEntry { binding: 1, resource: light_binding.clone(), }, BindGroupEntry { binding: 2, resource: BindingResource::TextureView( &view_shadow_bindings.point_light_depth_texture_view, ), }, BindGroupEntry { binding: 3, resource: BindingResource::Sampler(&shadow_pipeline.point_light_sampler), }, BindGroupEntry { binding: 4, resource: BindingResource::TextureView( &view_shadow_bindings.directional_light_depth_texture_view, ), }, BindGroupEntry { binding: 5, resource: BindingResource::Sampler( &shadow_pipeline.directional_light_sampler, ), }, BindGroupEntry { binding: 6, resource: point_light_binding.clone(), }, BindGroupEntry { binding: 7, resource: view_cluster_bindings.light_index_lists_binding().unwrap(), }, BindGroupEntry { binding: 8, resource: view_cluster_bindings.offsets_and_counts_binding().unwrap(), }, ], label: Some("mesh_view_bind_group"), layout: &mesh_pipeline.view_layout, }); commands.entity(entity).insert(MeshViewBindGroup { value: view_bind_group, }); } } } pub struct SetMeshViewBindGroup; impl EntityRenderCommand for SetMeshViewBindGroup { type Param = SQuery<( Read, Read, Read, )>; #[inline] fn render<'w>( view: Entity, _item: Entity, view_query: SystemParamItem<'w, '_, Self::Param>, pass: &mut TrackedRenderPass<'w>, ) -> RenderCommandResult { let (view_uniform, view_lights, mesh_view_bind_group) = view_query.get_inner(view).unwrap(); pass.set_bind_group( I, &mesh_view_bind_group.value, &[view_uniform.offset, view_lights.offset], ); RenderCommandResult::Success } } pub struct SetMeshBindGroup; impl EntityRenderCommand for SetMeshBindGroup { type Param = ( SRes, SQuery<( Read>, Option>, )>, ); #[inline] fn render<'w>( _view: Entity, item: Entity, (mesh_bind_group, mesh_query): SystemParamItem<'w, '_, Self::Param>, pass: &mut TrackedRenderPass<'w>, ) -> RenderCommandResult { let (mesh_index, skinned_mesh_joints) = mesh_query.get(item).unwrap(); if let Some(joints) = skinned_mesh_joints { pass.set_bind_group( I, mesh_bind_group.into_inner().skinned.as_ref().unwrap(), &[mesh_index.index(), joints.index], ); } else { pass.set_bind_group( I, &mesh_bind_group.into_inner().normal, &[mesh_index.index()], ); } RenderCommandResult::Success } } pub struct DrawMesh; impl EntityRenderCommand for DrawMesh { type Param = (SRes>, SQuery>>); #[inline] fn render<'w>( _view: Entity, item: Entity, (meshes, mesh_query): SystemParamItem<'w, '_, Self::Param>, pass: &mut TrackedRenderPass<'w>, ) -> RenderCommandResult { let mesh_handle = mesh_query.get(item).unwrap(); if let Some(gpu_mesh) = meshes.into_inner().get(mesh_handle) { pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..)); match &gpu_mesh.buffer_info { GpuBufferInfo::Indexed { buffer, index_format, count, } => { pass.set_index_buffer(buffer.slice(..), 0, *index_format); pass.draw_indexed(0..*count, 0, 0..1); } GpuBufferInfo::NonIndexed { vertex_count } => { pass.draw(0..*vertex_count, 0..1); } } RenderCommandResult::Success } else { RenderCommandResult::Failure } } } #[cfg(test)] mod tests { use super::MeshPipelineKey; #[test] fn mesh_key_msaa_samples() { for i in 1..=64 { assert_eq!(MeshPipelineKey::from_msaa_samples(i).msaa_samples(), i); } } }