// TODO: try merging this block with the binding? [[block]] struct View { view_proj: mat4x4; world_position: vec3; }; [[group(0), binding(0)]] var view: View; [[block]] struct Mesh { transform: mat4x4; }; [[group(1), binding(0)]] var mesh: Mesh; struct Vertex { [[location(0)]] position: vec3; [[location(1)]] normal: vec3; [[location(2)]] uv: vec2; }; struct VertexOutput { [[builtin(position)]] clip_position: vec4; [[location(0)]] world_position: vec4; [[location(1)]] world_normal: vec3; [[location(2)]] uv: vec2; }; [[stage(vertex)]] fn vertex(vertex: Vertex) -> VertexOutput { let world_position = mesh.transform * vec4(vertex.position, 1.0); var out: VertexOutput; out.uv = vertex.uv; out.world_position = world_position; out.clip_position = view.view_proj * world_position; // FIXME: The inverse transpose of the model matrix should be used to correctly handle scaling // of normals out.world_normal = mat3x3(mesh.transform.x.xyz, mesh.transform.y.xyz, mesh.transform.z.xyz) * vertex.normal; return out; } // From the Filament design doc // https://google.github.io/filament/Filament.html#table_symbols // Symbol Definition // v View unit vector // l Incident light unit vector // n Surface normal unit vector // h Half unit vector between l and v // f BRDF // f_d Diffuse component of a BRDF // f_r Specular component of a BRDF // α Roughness, remapped from using input perceptualRoughness // σ Diffuse reflectance // Ω Spherical domain // f0 Reflectance at normal incidence // f90 Reflectance at grazing angle // χ+(a) Heaviside function (1 if a>0 and 0 otherwise) // nior Index of refraction (IOR) of an interface // ⟨n⋅l⟩ Dot product clamped to [0..1] // ⟨a⟩ Saturated value (clamped to [0..1]) // The Bidirectional Reflectance Distribution Function (BRDF) describes the surface response of a standard material // and consists of two components, the diffuse component (f_d) and the specular component (f_r): // f(v,l) = f_d(v,l) + f_r(v,l) // // The form of the microfacet model is the same for diffuse and specular // f_r(v,l) = f_d(v,l) = 1 / { |n⋅v||n⋅l| } ∫_Ω D(m,α) G(v,l,m) f_m(v,l,m) (v⋅m) (l⋅m) dm // // In which: // D, also called the Normal Distribution Function (NDF) models the distribution of the microfacets // G models the visibility (or occlusion or shadow-masking) of the microfacets // f_m is the microfacet BRDF and differs between specular and diffuse components // // The above integration needs to be approximated. [[block]] struct StandardMaterial { base_color: vec4; emissive: vec4; perceptual_roughness: f32; metallic: f32; reflectance: f32; // 'flags' is a bit field indicating various option. uint is 32 bits so we have up to 32 options. flags: u32; }; struct PointLight { color: vec4; // projection: mat4x4; position: vec3; inverse_square_range: f32; radius: f32; near: f32; far: f32; shadow_bias_min: f32; shadow_bias_max: f32; }; struct DirectionalLight { view_projection: mat4x4; color: vec4; direction_to_light: vec3; shadow_bias_min: f32; shadow_bias_max: f32; }; [[block]] struct Lights { // NOTE: this array size must be kept in sync with the constants defined bevy_pbr2/src/render/light.rs // TODO: this can be removed if we move to storage buffers for light arrays point_lights: array; directional_lights: array; ambient_color: vec4; n_point_lights: u32; n_directional_lights: u32; }; let FLAGS_BASE_COLOR_TEXTURE_BIT: u32 = 1u; let FLAGS_EMISSIVE_TEXTURE_BIT: u32 = 2u; let FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT: u32 = 4u; let FLAGS_OCCLUSION_TEXTURE_BIT: u32 = 8u; let FLAGS_DOUBLE_SIDED_BIT: u32 = 16u; let FLAGS_UNLIT_BIT: u32 = 32u; [[group(0), binding(1)]] var lights: Lights; [[group(0), binding(2)]] var point_shadow_textures: texture_depth_cube_array; [[group(0), binding(3)]] var point_shadow_textures_sampler: sampler_comparison; [[group(0), binding(4)]] var directional_shadow_textures: texture_depth_2d_array; [[group(0), binding(5)]] var directional_shadow_textures_sampler: sampler_comparison; [[group(2), binding(0)]] var material: StandardMaterial; [[group(2), binding(1)]] var base_color_texture: texture_2d; [[group(2), binding(2)]] var base_color_sampler: sampler; [[group(2), binding(3)]] var emissive_texture: texture_2d; [[group(2), binding(4)]] var emissive_sampler: sampler; [[group(2), binding(5)]] var metallic_roughness_texture: texture_2d; [[group(2), binding(6)]] var metallic_roughness_sampler: sampler; [[group(2), binding(7)]] var occlusion_texture: texture_2d; [[group(2), binding(8)]] var occlusion_sampler: sampler; let PI: f32 = 3.141592653589793; fn saturate(value: f32) -> f32 { return clamp(value, 0.0, 1.0); } // distanceAttenuation is simply the square falloff of light intensity // combined with a smooth attenuation at the edge of the light radius // // light radius is a non-physical construct for efficiency purposes, // because otherwise every light affects every fragment in the scene fn getDistanceAttenuation(distanceSquare: f32, inverseRangeSquared: f32) -> f32 { let factor = distanceSquare * inverseRangeSquared; let smoothFactor = saturate(1.0 - factor * factor); let attenuation = smoothFactor * smoothFactor; return attenuation * 1.0 / max(distanceSquare, 0.0001); } // Normal distribution function (specular D) // Based on https://google.github.io/filament/Filament.html#citation-walter07 // D_GGX(h,α) = α^2 / { π ((n⋅h)^2 (α2−1) + 1)^2 } // Simple implementation, has precision problems when using fp16 instead of fp32 // see https://google.github.io/filament/Filament.html#listing_speculardfp16 fn D_GGX(roughness: f32, NoH: f32, h: vec3) -> f32 { let oneMinusNoHSquared = 1.0 - NoH * NoH; let a = NoH * roughness; let k = roughness / (oneMinusNoHSquared + a * a); let d = k * k * (1.0 / PI); return d; } // Visibility function (Specular G) // V(v,l,a) = G(v,l,α) / { 4 (n⋅v) (n⋅l) } // such that f_r becomes // f_r(v,l) = D(h,α) V(v,l,α) F(v,h,f0) // where // V(v,l,α) = 0.5 / { n⋅l sqrt((n⋅v)^2 (1−α2) + α2) + n⋅v sqrt((n⋅l)^2 (1−α2) + α2) } // Note the two sqrt's, that may be slow on mobile, see https://google.github.io/filament/Filament.html#listing_approximatedspecularv fn V_SmithGGXCorrelated(roughness: f32, NoV: f32, NoL: f32) -> f32 { let a2 = roughness * roughness; let lambdaV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2); let lambdaL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2); let v = 0.5 / (lambdaV + lambdaL); return v; } // Fresnel function // see https://google.github.io/filament/Filament.html#citation-schlick94 // F_Schlick(v,h,f_0,f_90) = f_0 + (f_90 − f_0) (1 − v⋅h)^5 fn F_Schlick_vec(f0: vec3, f90: f32, VoH: f32) -> vec3 { // not using mix to keep the vec3 and float versions identical return f0 + (f90 - f0) * pow(1.0 - VoH, 5.0); } fn F_Schlick(f0: f32, f90: f32, VoH: f32) -> f32 { // not using mix to keep the vec3 and float versions identical return f0 + (f90 - f0) * pow(1.0 - VoH, 5.0); } fn fresnel(f0: vec3, LoH: f32) -> vec3 { // f_90 suitable for ambient occlusion // see https://google.github.io/filament/Filament.html#lighting/occlusion let f90 = saturate(dot(f0, vec3(50.0 * 0.33))); return F_Schlick_vec(f0, f90, LoH); } // Specular BRDF // https://google.github.io/filament/Filament.html#materialsystem/specularbrdf // Cook-Torrance approximation of the microfacet model integration using Fresnel law F to model f_m // f_r(v,l) = { D(h,α) G(v,l,α) F(v,h,f0) } / { 4 (n⋅v) (n⋅l) } fn specular(f0: vec3, roughness: f32, h: vec3, NoV: f32, NoL: f32, NoH: f32, LoH: f32, specularIntensity: f32) -> vec3 { let D = D_GGX(roughness, NoH, h); let V = V_SmithGGXCorrelated(roughness, NoV, NoL); let F = fresnel(f0, LoH); return (specularIntensity * D * V) * F; } // Diffuse BRDF // https://google.github.io/filament/Filament.html#materialsystem/diffusebrdf // fd(v,l) = σ/π * 1 / { |n⋅v||n⋅l| } ∫Ω D(m,α) G(v,l,m) (v⋅m) (l⋅m) dm // // simplest approximation // float Fd_Lambert() { // return 1.0 / PI; // } // // vec3 Fd = diffuseColor * Fd_Lambert(); // // Disney approximation // See https://google.github.io/filament/Filament.html#citation-burley12 // minimal quality difference fn Fd_Burley(roughness: f32, NoV: f32, NoL: f32, LoH: f32) -> f32 { let f90 = 0.5 + 2.0 * roughness * LoH * LoH; let lightScatter = F_Schlick(1.0, f90, NoL); let viewScatter = F_Schlick(1.0, f90, NoV); return lightScatter * viewScatter * (1.0 / PI); } // From https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile fn EnvBRDFApprox(f0: vec3, perceptual_roughness: f32, NoV: f32) -> vec3 { let c0 = vec4(-1.0, -0.0275, -0.572, 0.022); let c1 = vec4(1.0, 0.0425, 1.04, -0.04); let r = perceptual_roughness * c0 + c1; let a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y; let AB = vec2(-1.04, 1.04) * a004 + r.zw; return f0 * AB.x + AB.y; } fn perceptualRoughnessToRoughness(perceptualRoughness: f32) -> f32 { // clamp perceptual roughness to prevent precision problems // According to Filament design 0.089 is recommended for mobile // Filament uses 0.045 for non-mobile let clampedPerceptualRoughness = clamp(perceptualRoughness, 0.089, 1.0); return clampedPerceptualRoughness * clampedPerceptualRoughness; } // from https://64.github.io/tonemapping/ // reinhard on RGB oversaturates colors fn reinhard(color: vec3) -> vec3 { return color / (1.0 + color); } fn reinhard_extended(color: vec3, max_white: f32) -> vec3 { let numerator = color * (1.0f + (color / vec3(max_white * max_white))); return numerator / (1.0 + color); } // luminance coefficients from Rec. 709. // https://en.wikipedia.org/wiki/Rec._709 fn luminance(v: vec3) -> f32 { return dot(v, vec3(0.2126, 0.7152, 0.0722)); } fn change_luminance(c_in: vec3, l_out: f32) -> vec3 { let l_in = luminance(c_in); return c_in * (l_out / l_in); } fn reinhard_luminance(color: vec3) -> vec3 { let l_old = luminance(color); let l_new = l_old / (1.0f + l_old); return change_luminance(color, l_new); } fn reinhard_extended_luminance(color: vec3, max_white_l: f32) -> vec3 { let l_old = luminance(color); let numerator = l_old * (1.0f + (l_old / (max_white_l * max_white_l))); let l_new = numerator / (1.0f + l_old); return change_luminance(color, l_new); } fn point_light( world_position: vec3, light: PointLight, roughness: f32, NdotV: f32, N: vec3, V: vec3, R: vec3, F0: vec3, diffuseColor: vec3 ) -> vec3 { let light_to_frag = light.position.xyz - world_position.xyz; let distance_square = dot(light_to_frag, light_to_frag); let rangeAttenuation = getDistanceAttenuation(distance_square, light.inverse_square_range); // Specular. // Representative Point Area Lights. // see http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf p14-16 let a = roughness; let centerToRay = dot(light_to_frag, R) * R - light_to_frag; let closestPoint = light_to_frag + centerToRay * saturate(light.radius * inverseSqrt(dot(centerToRay, centerToRay))); let LspecLengthInverse = inverseSqrt(dot(closestPoint, closestPoint)); let normalizationFactor = a / saturate(a + (light.radius * 0.5 * LspecLengthInverse)); let specularIntensity = normalizationFactor * normalizationFactor; var L: vec3 = closestPoint * LspecLengthInverse; // normalize() equivalent? var H: vec3 = normalize(L + V); var NoL: f32 = saturate(dot(N, L)); var NoH: f32 = saturate(dot(N, H)); var LoH: f32 = saturate(dot(L, H)); let specular_light = specular(F0, roughness, H, NdotV, NoL, NoH, LoH, specularIntensity); // Diffuse. // Comes after specular since its NoL is used in the lighting equation. L = normalize(light_to_frag); H = normalize(L + V); NoL = saturate(dot(N, L)); NoH = saturate(dot(N, H)); LoH = saturate(dot(L, H)); let diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH); // Lout = f(v,l) Φ / { 4 π d^2 }⟨n⋅l⟩ // where // f(v,l) = (f_d(v,l) + f_r(v,l)) * light_color // Φ is light intensity // our rangeAttentuation = 1 / d^2 multiplied with an attenuation factor for smoothing at the edge of the non-physical maximum light radius // It's not 100% clear where the 1/4π goes in the derivation, but we follow the filament shader and leave it out // See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminanceEquation // TODO compensate for energy loss https://google.github.io/filament/Filament.html#materialsystem/improvingthebrdfs/energylossinspecularreflectance // light.color.rgb is premultiplied with light.intensity on the CPU return ((diffuse + specular_light) * light.color.rgb) * (rangeAttenuation * NoL); } fn directional_light(light: DirectionalLight, roughness: f32, NdotV: f32, normal: vec3, view: vec3, R: vec3, F0: vec3, diffuseColor: vec3) -> vec3 { let incident_light = light.direction_to_light.xyz; let half_vector = normalize(incident_light + view); let NoL = saturate(dot(normal, incident_light)); let NoH = saturate(dot(normal, half_vector)); let LoH = saturate(dot(incident_light, half_vector)); let diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH); let specularIntensity = 1.0; let specular_light = specular(F0, roughness, half_vector, NdotV, NoL, NoH, LoH, specularIntensity); return (specular_light + diffuse) * light.color.rgb * NoL; } fn fetch_point_shadow(light_id: i32, frag_position: vec4, shadow_bias: f32) -> f32 { let light = lights.point_lights[light_id]; // because the shadow maps align with the axes and the frustum planes are at 45 degrees // we can get the worldspace depth by taking the largest absolute axis let frag_ls = light.position.xyz - frag_position.xyz; let abs_position_ls = abs(frag_ls); let major_axis_magnitude = max(abs_position_ls.x, max(abs_position_ls.y, abs_position_ls.z)); // do a full projection // vec4 clip = light.projection * vec4(0.0, 0.0, -major_axis_magnitude, 1.0); // float depth = (clip.z / clip.w); // alternatively do only the necessary multiplications using near/far let proj_r = light.far / (light.near - light.far); let z = -major_axis_magnitude * proj_r + light.near * proj_r; let w = major_axis_magnitude; let depth = z / w; // let shadow = texture(samplerCubeArrayShadow(t_Shadow, s_Shadow), vec4(frag_ls, i), depth - bias); // manual depth testing // float shadow = texture(samplerCubeArray(t_Shadow, s_Shadow), vec4(-frag_ls, 6 * i)).r; // shadow = depth > shadow ? 0.0 : 1.0; // o_Target = vec4(vec3(shadow * 20 - 19, depth * 20 - 19, 0.0), 1.0); // o_Target = vec4(vec3(shadow * 20 - 19), 1.0); // do the lookup, using HW PCF and comparison // NOTE: Due to the non-uniform control flow above, we must use the Level variant of // textureSampleCompare to avoid undefined behaviour due to some of the fragments in // a quad (2x2 fragments) being processed not being sampled, and this messing with // mip-mapping functionality. The shadow maps have no mipmaps so Level just samples // from LOD 0. let bias = 0.0001; return textureSampleCompareLevel(point_shadow_textures, point_shadow_textures_sampler, frag_ls, i32(light_id), depth - shadow_bias); } fn fetch_directional_shadow(light_id: i32, homogeneous_coords: vec4, shadow_bias: f32) -> f32 { if (homogeneous_coords.w <= 0.0) { return 1.0; } // compensate for the Y-flip difference between the NDC and texture coordinates let flip_correction = vec2(0.5, -0.5); let proj_correction = 1.0 / homogeneous_coords.w; // compute texture coordinates for shadow lookup let light_local = homogeneous_coords.xy * flip_correction * proj_correction + vec2(0.5, 0.5); // do the lookup, using HW PCF and comparison // NOTE: Due to non-uniform control flow above, we must use the level variant of the texture // sampler to avoid use of implicit derivatives causing possible undefined behavior. return textureSampleCompareLevel(directional_shadow_textures, directional_shadow_textures_sampler, light_local, i32(light_id), homogeneous_coords.z * proj_correction - shadow_bias); } struct FragmentInput { [[builtin(front_facing)]] is_front: bool; [[location(0)]] world_position: vec4; [[location(1)]] world_normal: vec3; [[location(2)]] uv: vec2; }; [[stage(fragment)]] fn fragment(in: FragmentInput) -> [[location(0)]] vec4 { var output_color: vec4 = material.base_color; if ((material.flags & FLAGS_BASE_COLOR_TEXTURE_BIT) != 0u) { output_color = output_color * textureSample(base_color_texture, base_color_sampler, in.uv); } // // NOTE: Unlit bit not set means == 0 is true, so the true case is if lit if ((material.flags & FLAGS_UNLIT_BIT) == 0u) { // TODO use .a for exposure compensation in HDR var emissive: vec4 = material.emissive; if ((material.flags & FLAGS_EMISSIVE_TEXTURE_BIT) != 0u) { emissive = vec4(emissive.rgb * textureSample(emissive_texture, emissive_sampler, in.uv).rgb, 1.0); } // calculate non-linear roughness from linear perceptualRoughness var metallic: f32 = material.metallic; var perceptual_roughness: f32 = material.perceptual_roughness; if ((material.flags & FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT) != 0u) { let metallic_roughness = textureSample(metallic_roughness_texture, metallic_roughness_sampler, in.uv); // Sampling from GLTF standard channels for now metallic = metallic * metallic_roughness.b; perceptual_roughness = perceptual_roughness * metallic_roughness.g; } let roughness = perceptualRoughnessToRoughness(perceptual_roughness); var occlusion: f32 = 1.0; if ((material.flags & FLAGS_OCCLUSION_TEXTURE_BIT) != 0u) { occlusion = textureSample(occlusion_texture, occlusion_sampler, in.uv).r; } var N: vec3 = normalize(in.world_normal); // FIXME: Normal maps need an additional vertex attribute and vertex stage output/fragment stage input // Just use a separate shader for lit with normal maps? // # ifdef STANDARDMATERIAL_NORMAL_MAP // vec3 T = normalize(v_WorldTangent.xyz); // vec3 B = cross(N, T) * v_WorldTangent.w; // # endif if ((material.flags & FLAGS_DOUBLE_SIDED_BIT) != 0u) { if (!in.is_front) { N = -N; } // # ifdef STANDARDMATERIAL_NORMAL_MAP // T = gl_FrontFacing ? T : -T; // B = gl_FrontFacing ? B : -B; // # endif } // # ifdef STANDARDMATERIAL_NORMAL_MAP // mat3 TBN = mat3(T, B, N); // N = TBN * normalize(texture(sampler2D(normal_map, normal_map_sampler), v_Uv).rgb * 2.0 - 1.0); // # endif var V: vec3; if (view.view_proj.w.w != 1.0) { // If the projection is not orthographic // Only valid for a perpective projection V = normalize(view.world_position.xyz - in.world_position.xyz); } else { // Ortho view vec V = normalize(vec3(-view.view_proj.x.z, -view.view_proj.y.z, -view.view_proj.z.z)); } // Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886" let NdotV = max(dot(N, V), 0.0001); // Remapping [0,1] reflectance to F0 // See https://google.github.io/filament/Filament.html#materialsystem/parameterization/remapping let reflectance = material.reflectance; let F0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + output_color.rgb * metallic; // Diffuse strength inversely related to metallicity let diffuse_color = output_color.rgb * (1.0 - metallic); let R = reflect(-V, N); // accumulate color var light_accum: vec3 = vec3(0.0); let n_point_lights = i32(lights.n_point_lights); let n_directional_lights = i32(lights.n_directional_lights); for (var i: i32 = 0; i < n_point_lights; i = i + 1) { let light = lights.point_lights[i]; let light_contrib = point_light(in.world_position.xyz, light, roughness, NdotV, N, V, R, F0, diffuse_color); let dir_to_light = normalize(light.position.xyz - in.world_position.xyz); let shadow_bias = max( light.shadow_bias_max * (1.0 - dot(in.world_normal, dir_to_light)), light.shadow_bias_min ); let shadow = fetch_point_shadow(i, in.world_position, shadow_bias); light_accum = light_accum + light_contrib * shadow; } for (var i: i32 = 0; i < n_directional_lights; i = i + 1) { let light = lights.directional_lights[i]; let light_contrib = directional_light(light, roughness, NdotV, N, V, R, F0, diffuse_color); let shadow_bias = max( light.shadow_bias_max * (1.0 - dot(in.world_normal, light.direction_to_light.xyz)), light.shadow_bias_min ); let shadow = fetch_directional_shadow(i, light.view_projection * in.world_position, shadow_bias); light_accum = light_accum + light_contrib * shadow; } let diffuse_ambient = EnvBRDFApprox(diffuse_color, 1.0, NdotV); let specular_ambient = EnvBRDFApprox(F0, perceptual_roughness, NdotV); output_color = vec4( light_accum + (diffuse_ambient + specular_ambient) * lights.ambient_color.rgb * occlusion + emissive.rgb * output_color.a, output_color.a); // tone_mapping output_color = vec4(reinhard_luminance(output_color.rgb), output_color.a); // Gamma correction. // Not needed with sRGB buffer // output_color.rgb = pow(output_color.rgb, vec3(1.0 / 2.2)); } return output_color; }