//! Shows how to iterate over combinations of query results. use bevy::{color::palettes::css::ORANGE_RED, prelude::*}; use rand::{Rng, SeedableRng}; use rand_chacha::ChaCha8Rng; fn main() { App::new() .add_plugins(DefaultPlugins) .insert_resource(ClearColor(Color::BLACK)) .add_systems(Startup, generate_bodies) .add_systems(FixedUpdate, (interact_bodies, integrate)) .add_systems(Update, look_at_star) .run(); } const GRAVITY_CONSTANT: f32 = 0.001; const NUM_BODIES: usize = 100; #[derive(Component, Default)] struct Mass(f32); #[derive(Component, Default)] struct Acceleration(Vec3); #[derive(Component, Default)] struct LastPos(Vec3); #[derive(Component)] struct Star; #[derive(Bundle, Default)] struct BodyBundle { pbr: PbrBundle, mass: Mass, last_pos: LastPos, acceleration: Acceleration, } fn generate_bodies( time: Res>, mut commands: Commands, mut meshes: ResMut>, mut materials: ResMut>, ) { let mesh = meshes.add(Sphere::new(1.0).mesh().ico(3).unwrap()); let color_range = 0.5..1.0; let vel_range = -0.5..0.5; // We're seeding the PRNG here to make this example deterministic for testing purposes. // This isn't strictly required in practical use unless you need your app to be deterministic. let mut rng = ChaCha8Rng::seed_from_u64(19878367467713); for _ in 0..NUM_BODIES { let radius: f32 = rng.gen_range(0.1..0.7); let mass_value = radius.powi(3) * 10.; let position = Vec3::new( rng.gen_range(-1.0..1.0), rng.gen_range(-1.0..1.0), rng.gen_range(-1.0..1.0), ) .normalize() * rng.gen_range(0.2f32..1.0).cbrt() * 15.; commands.spawn(BodyBundle { pbr: PbrBundle { transform: Transform { translation: position, scale: Vec3::splat(radius), ..default() }, mesh: mesh.clone(), material: materials.add(Color::srgb( rng.gen_range(color_range.clone()), rng.gen_range(color_range.clone()), rng.gen_range(color_range.clone()), )), ..default() }, mass: Mass(mass_value), acceleration: Acceleration(Vec3::ZERO), last_pos: LastPos( position - Vec3::new( rng.gen_range(vel_range.clone()), rng.gen_range(vel_range.clone()), rng.gen_range(vel_range.clone()), ) * time.timestep().as_secs_f32(), ), }); } // add bigger "star" body in the center let star_radius = 1.; commands .spawn(( BodyBundle { pbr: PbrBundle { transform: Transform::from_scale(Vec3::splat(star_radius)), mesh: meshes.add(Sphere::new(1.0).mesh().ico(5).unwrap()), material: materials.add(StandardMaterial { base_color: ORANGE_RED.into(), emissive: (LinearRgba::from(ORANGE_RED) * 2.).into(), ..default() }), ..default() }, mass: Mass(500.0), ..default() }, Star, )) .with_children(|p| { p.spawn(PointLightBundle { point_light: PointLight { color: Color::WHITE, range: 100.0, radius: star_radius, ..default() }, ..default() }); }); commands.spawn(Camera3dBundle { transform: Transform::from_xyz(0.0, 10.5, -30.0).looking_at(Vec3::ZERO, Vec3::Y), ..default() }); } fn interact_bodies(mut query: Query<(&Mass, &GlobalTransform, &mut Acceleration)>) { let mut iter = query.iter_combinations_mut(); while let Some([(Mass(m1), transform1, mut acc1), (Mass(m2), transform2, mut acc2)]) = iter.fetch_next() { let delta = transform2.translation() - transform1.translation(); let distance_sq: f32 = delta.length_squared(); let f = GRAVITY_CONSTANT / distance_sq; let force_unit_mass = delta * f; acc1.0 += force_unit_mass * *m2; acc2.0 -= force_unit_mass * *m1; } } fn integrate(time: Res