//! Simple benchmark to test per-entity draw overhead. //! //! To measure performance realistically, be sure to run this in release mode. //! `cargo run --example many_cubes --release` //! //! By default, this arranges the meshes in a cubical pattern, where the number of visible meshes //! varies with the viewing angle. You can choose to run the demo with a spherical pattern that //! distributes the meshes evenly. //! //! To start the demo using the spherical layout run //! `cargo run --example many_cubes --release sphere` use bevy::{ diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin}, math::{DVec2, DVec3}, prelude::*, }; fn main() { App::new() .add_plugins(DefaultPlugins) .add_plugin(FrameTimeDiagnosticsPlugin::default()) .add_plugin(LogDiagnosticsPlugin::default()) .add_startup_system(setup) .add_system(move_camera) .add_system(print_mesh_count) .run(); } fn setup( mut commands: Commands, mut meshes: ResMut>, mut materials: ResMut>, ) { const WIDTH: usize = 200; const HEIGHT: usize = 200; let mesh = meshes.add(Mesh::from(shape::Cube { size: 1.0 })); let material = materials.add(StandardMaterial { base_color: Color::PINK, ..default() }); match std::env::args().nth(1).as_deref() { Some("sphere") => { // NOTE: This pattern is good for testing performance of culling as it provides roughly // the same number of visible meshes regardless of the viewing angle. const N_POINTS: usize = WIDTH * HEIGHT * 4; // NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution let radius = WIDTH as f64 * 2.5; let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt()); for i in 0..N_POINTS { let spherical_polar_theta_phi = fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS); let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi); commands.spawn_bundle(PbrBundle { mesh: mesh.clone_weak(), material: material.clone_weak(), transform: Transform::from_translation((radius * unit_sphere_p).as_vec3()), ..default() }); } // camera commands.spawn_bundle(PerspectiveCameraBundle::default()); } _ => { // NOTE: This pattern is good for demonstrating that frustum culling is working correctly // as the number of visible meshes rises and falls depending on the viewing angle. for x in 0..WIDTH { for y in 0..HEIGHT { // introduce spaces to break any kind of moiré pattern if x % 10 == 0 || y % 10 == 0 { continue; } // cube commands.spawn_bundle(PbrBundle { mesh: mesh.clone_weak(), material: material.clone_weak(), transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0), ..default() }); commands.spawn_bundle(PbrBundle { mesh: mesh.clone_weak(), material: material.clone_weak(), transform: Transform::from_xyz( (x as f32) * 2.5, HEIGHT as f32 * 2.5, (y as f32) * 2.5, ), ..default() }); commands.spawn_bundle(PbrBundle { mesh: mesh.clone_weak(), material: material.clone_weak(), transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5), ..default() }); commands.spawn_bundle(PbrBundle { mesh: mesh.clone_weak(), material: material.clone_weak(), transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5), ..default() }); } } // camera commands.spawn_bundle(PerspectiveCameraBundle { transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32), ..default() }); } } // add one cube, the only one with strong handles // also serves as a reference point during rotation commands.spawn_bundle(PbrBundle { mesh, material, transform: Transform { translation: Vec3::new(0.0, HEIGHT as f32 * 2.5, 0.0), scale: Vec3::splat(5.0), ..default() }, ..default() }); commands.spawn_bundle(DirectionalLightBundle { ..default() }); } // NOTE: This epsilon value is apparently optimal for optimizing for the average // nearest-neighbor distance. See: // http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/ // for details. const EPSILON: f64 = 0.36; fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 { DVec2::new( 2.0 * std::f64::consts::PI * (i as f64 / golden_ratio), (1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(), ) } fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 { let (sin_theta, cos_theta) = p.x.sin_cos(); let (sin_phi, cos_phi) = p.y.sin_cos(); DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi) } // System for rotating the camera fn move_camera(time: Res