use crate::{ component::Tick, entity::Entity, query::{ BatchingStrategy, QueryCombinationIter, QueryData, QueryEntityError, QueryFilter, QueryIter, QueryManyIter, QueryParIter, QuerySingleError, QueryState, ROQueryItem, ReadOnlyQueryData, }, world::unsafe_world_cell::UnsafeWorldCell, }; use std::borrow::Borrow; /// [System parameter] that provides selective access to the [`Component`] data stored in a [`World`]. /// /// Enables access to [entity identifiers] and [components] from a system, without the need to directly access the world. /// Its iterators and getter methods return *query items*. /// Each query item is a type containing data relative to an entity. /// /// `Query` is a generic data structure that accepts two type parameters: /// /// - **`D` (query data).** /// The type of data contained in the query item. /// Only entities that match the requested data will generate an item. /// Must implement the [`QueryData`] trait. /// - **`F` (query filter).** /// A set of conditions that determines whether query items should be kept or discarded. /// Must implement the [`QueryFilter`] trait. /// This type parameter is optional. /// /// [`World`]: crate::world::World /// /// # System parameter declaration /// /// A query should always be declared as a system parameter. /// This section shows the most common idioms involving the declaration of `Query`. /// /// ## Component access /// /// A query defined with a reference to a component as the query fetch type parameter can be used to generate items that refer to the data of said component. /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// # fn immutable_ref( /// // A component can be accessed by shared reference... /// query: Query<&ComponentA> /// # ) {} /// # bevy_ecs::system::assert_is_system(immutable_ref); /// /// # fn mutable_ref( /// // ... or by mutable reference. /// query: Query<&mut ComponentA> /// # ) {} /// # bevy_ecs::system::assert_is_system(mutable_ref); /// ``` /// /// ## Query filtering /// /// Setting the query filter type parameter will ensure that each query item satisfies the given condition. /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// # #[derive(Component)] /// # struct ComponentB; /// # fn system( /// // Just `ComponentA` data will be accessed, but only for entities that also contain /// // `ComponentB`. /// query: Query<&ComponentA, With> /// # ) {} /// # bevy_ecs::system::assert_is_system(system); /// ``` /// /// ## `QueryData` or `QueryFilter` tuples /// /// Using tuples, each `Query` type parameter can contain multiple elements. /// /// In the following example, two components are accessed simultaneously, and the query items are filtered on two conditions. /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// # #[derive(Component)] /// # struct ComponentB; /// # #[derive(Component)] /// # struct ComponentC; /// # #[derive(Component)] /// # struct ComponentD; /// # fn immutable_ref( /// query: Query<(&ComponentA, &ComponentB), (With, Without)> /// # ) {} /// # bevy_ecs::system::assert_is_system(immutable_ref); /// ``` /// /// ## Entity identifier access /// /// The identifier of an entity can be made available inside the query item by including [`Entity`] in the query fetch type parameter. /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// # fn system( /// query: Query<(Entity, &ComponentA)> /// # ) {} /// # bevy_ecs::system::assert_is_system(system); /// ``` /// /// ## Optional component access /// /// A component can be made optional in a query by wrapping it into an [`Option`]. /// In this way, a query item can still be generated even if the queried entity does not contain the wrapped component. /// In this case, its corresponding value will be `None`. /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// # #[derive(Component)] /// # struct ComponentB; /// # fn system( /// // Generates items for entities that contain `ComponentA`, and optionally `ComponentB`. /// query: Query<(&ComponentA, Option<&ComponentB>)> /// # ) {} /// # bevy_ecs::system::assert_is_system(system); /// ``` /// /// See the documentation for [`AnyOf`] to idiomatically declare many optional components. /// /// See the [performance] section to learn more about the impact of optional components. /// /// ## Disjoint queries /// /// A system cannot contain two queries that break Rust's mutability rules. /// In this case, the [`Without`] filter can be used to disjoint them. /// /// In the following example, two queries mutably access the same component. /// Executing this system will panic, since an entity could potentially match the two queries at the same time by having both `Player` and `Enemy` components. /// This would violate mutability rules. /// /// ```should_panic /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct Health; /// # #[derive(Component)] /// # struct Player; /// # #[derive(Component)] /// # struct Enemy; /// # /// fn randomize_health( /// player_query: Query<&mut Health, With>, /// enemy_query: Query<&mut Health, With>, /// ) /// # {} /// # let mut randomize_health_system = IntoSystem::into_system(randomize_health); /// # let mut world = World::new(); /// # randomize_health_system.initialize(&mut world); /// # randomize_health_system.run((), &mut world); /// ``` /// /// Adding a `Without` filter will disjoint the queries. /// In this way, any entity that has both `Player` and `Enemy` components is excluded from both queries. /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct Health; /// # #[derive(Component)] /// # struct Player; /// # #[derive(Component)] /// # struct Enemy; /// # /// fn randomize_health( /// player_query: Query<&mut Health, (With, Without)>, /// enemy_query: Query<&mut Health, (With, Without)>, /// ) /// # {} /// # let mut randomize_health_system = IntoSystem::into_system(randomize_health); /// # let mut world = World::new(); /// # randomize_health_system.initialize(&mut world); /// # randomize_health_system.run((), &mut world); /// ``` /// /// An alternative to this idiom is to wrap the conflicting queries into a [`ParamSet`](super::ParamSet). /// /// ## Whole Entity Access /// /// [`EntityRef`]s can be fetched from a query. This will give read-only access to any component on the entity, /// and can be use to dynamically fetch any component without baking it into the query type. Due to this global /// access to the entity, this will block any other system from parallelizing with it. As such these queries /// should be sparingly used. /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// # fn system( /// query: Query<(EntityRef, &ComponentA)> /// # ) {} /// # bevy_ecs::system::assert_is_system(system); /// ``` /// /// As `EntityRef` can read any component on an entity, a query using it will conflict with *any* mutable /// access. It is strongly advised to couple `EntityRef` queries with the use of either `With`/`Without` /// filters or `ParamSets`. This also limits the scope of the query, which will improve iteration performance /// and also allows it to parallelize with other non-conflicting systems. /// /// ```should_panic /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// # fn system( /// // This will panic! /// query: Query<(EntityRef, &mut ComponentA)> /// # ) {} /// # bevy_ecs::system::assert_system_does_not_conflict(system); /// ``` /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// # #[derive(Component)] /// # struct ComponentB; /// # fn system( /// // This will not panic. /// query_a: Query>, /// query_b: Query<&mut ComponentB, Without>, /// # ) {} /// # bevy_ecs::system::assert_system_does_not_conflict(system); /// ``` /// /// # Accessing query items /// /// The following table summarizes the behavior of the safe methods that can be used to get query items. /// /// |Query methods|Effect| /// |:---:|---| /// |[`iter`]\[[`_mut`][`iter_mut`]]|Returns an iterator over all query items.| /// |[[`iter().for_each()`][`for_each`]\[[`iter_mut().for_each()`][`for_each`]],
[`par_iter`]\[[`_mut`][`par_iter_mut`]]|Runs a specified function for each query item.| /// |[`iter_many`]\[[`_mut`][`iter_many_mut`]]|Iterates or runs a specified function over query items generated by a list of entities.| /// |[`iter_combinations`]\[[`_mut`][`iter_combinations_mut`]]|Returns an iterator over all combinations of a specified number of query items.| /// |[`get`]\[[`_mut`][`get_mut`]]|Returns the query item for the specified entity.| /// |[`many`]\[[`_mut`][`many_mut`]],
[`get_many`]\[[`_mut`][`get_many_mut`]]|Returns the query items for the specified entities.| /// |[`single`]\[[`_mut`][`single_mut`]],
[`get_single`]\[[`_mut`][`get_single_mut`]]|Returns the query item while verifying that there aren't others.| /// /// There are two methods for each type of query operation: immutable and mutable (ending with `_mut`). /// When using immutable methods, the query items returned are of type [`ROQueryItem`], a read-only version of the query item. /// In this circumstance, every mutable reference in the query fetch type parameter is substituted by a shared reference. /// /// # Performance /// /// Creating a `Query` is a low-cost constant operation. /// Iterating it, on the other hand, fetches data from the world and generates items, which can have a significant computational cost. /// /// [`Table`] component storage type is much more optimized for query iteration than [`SparseSet`]. /// /// Two systems cannot be executed in parallel if both access the same component type where at least one of the accesses is mutable. /// This happens unless the executor can verify that no entity could be found in both queries. /// /// Optional components increase the number of entities a query has to match against. /// This can hurt iteration performance, especially if the query solely consists of only optional components, since the query would iterate over each entity in the world. /// /// The following table compares the computational complexity of the various methods and operations, where: /// /// - **n** is the number of entities that match the query, /// - **r** is the number of elements in a combination, /// - **k** is the number of involved entities in the operation, /// - **a** is the number of archetypes in the world, /// - **C** is the [binomial coefficient], used to count combinations. /// nCr is read as "*n* choose *r*" and is equivalent to the number of distinct unordered subsets of *r* elements that can be taken from a set of *n* elements. /// /// |Query operation|Computational complexity| /// |:---:|:---:| /// |[`iter`]\[[`_mut`][`iter_mut`]]|O(n)| /// |[[`iter().for_each()`][`for_each`]\[[`iter_mut().for_each()`][`for_each`]],
[`par_iter`]\[[`_mut`][`par_iter_mut`]]|O(n)| /// |[`iter_many`]\[[`_mut`][`iter_many_mut`]]|O(k)| /// |[`iter_combinations`]\[[`_mut`][`iter_combinations_mut`]]|O(nCr)| /// |[`get`]\[[`_mut`][`get_mut`]]|O(1)| /// |([`get_`][`get_many`])[`many`]|O(k)| /// |([`get_`][`get_many_mut`])[`many_mut`]|O(k2)| /// |[`single`]\[[`_mut`][`single_mut`]],
[`get_single`]\[[`_mut`][`get_single_mut`]]|O(a)| /// |Archetype based filtering ([`With`], [`Without`], [`Or`])|O(a)| /// |Change detection filtering ([`Added`], [`Changed`])|O(a + n)| /// /// # `Iterator::for_each` /// /// `for_each` methods are seen to be generally faster than directly iterating through `iter` on worlds with high archetype /// fragmentation, and may enable additional optimizations like [autovectorization]. It is strongly advised to only use /// [`Iterator::for_each`] if it tangibly improves performance. *Always* be sure profile or benchmark both before and /// after the change! /// /// ```rust /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// # fn system( /// # query: Query<&ComponentA>, /// # ) { /// // This might be result in better performance... /// query.iter().for_each(|component| { /// // do things with the component /// }); /// // ...than this. Always be sure to benchmark to validate the difference! /// for component in query.iter() { /// // do things with the component /// } /// # } /// # bevy_ecs::system::assert_system_does_not_conflict(system); /// ``` /// /// [`Component`]: crate::component::Component /// [autovectorization]: https://en.wikipedia.org/wiki/Automatic_vectorization /// [`Added`]: crate::query::Added /// [`AnyOf`]: crate::query::AnyOf /// [binomial coefficient]: https://en.wikipedia.org/wiki/Binomial_coefficient /// [`Changed`]: crate::query::Changed /// [components]: crate::component::Component /// [entity identifiers]: Entity /// [`EntityRef`]: crate::world::EntityRef /// [`for_each`]: #iterator-for-each /// [`get`]: Self::get /// [`get_many`]: Self::get_many /// [`get_many_mut`]: Self::get_many_mut /// [`get_mut`]: Self::get_mut /// [`get_single`]: Self::get_single /// [`get_single_mut`]: Self::get_single_mut /// [`iter`]: Self::iter /// [`iter_combinations`]: Self::iter_combinations /// [`iter_combinations_mut`]: Self::iter_combinations_mut /// [`iter_many`]: Self::iter_many /// [`iter_many_mut`]: Self::iter_many_mut /// [`iter_mut`]: Self::iter_mut /// [`many`]: Self::many /// [`many_mut`]: Self::many_mut /// [`Or`]: crate::query::Or /// [`par_iter`]: Self::par_iter /// [`par_iter_mut`]: Self::par_iter_mut /// [performance]: #performance /// [`single`]: Self::single /// [`single_mut`]: Self::single_mut /// [`SparseSet`]: crate::storage::SparseSet /// [System parameter]: crate::system::SystemParam /// [`Table`]: crate::storage::Table /// [`With`]: crate::query::With /// [`Without`]: crate::query::Without pub struct Query<'world, 'state, D: QueryData, F: QueryFilter = ()> { // SAFETY: Must have access to the components registered in `state`. world: UnsafeWorldCell<'world>, state: &'state QueryState, last_run: Tick, this_run: Tick, } impl std::fmt::Debug for Query<'_, '_, D, F> { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { f.debug_struct("Query") .field("matched_entities", &self.iter().count()) .field("state", &self.state) .field("last_run", &self.last_run) .field("this_run", &self.this_run) .field("world", &self.world) .finish() } } impl<'w, 's, D: QueryData, F: QueryFilter> Query<'w, 's, D, F> { /// Creates a new query. /// /// # Panics /// /// This will panic if the world used to create `state` is not `world`. /// /// # Safety /// /// This will create a query that could violate memory safety rules. Make sure that this is only /// called in ways that ensure the queries have unique mutable access. #[inline] pub(crate) unsafe fn new( world: UnsafeWorldCell<'w>, state: &'s QueryState, last_run: Tick, this_run: Tick, ) -> Self { state.validate_world(world.id()); Self { world, state, last_run, this_run, } } /// Returns another `Query` from this that fetches the read-only version of the query items. /// /// For example, `Query<(&mut D1, &D2, &mut D3), With>` will become `Query<(&D1, &D2, &D3), With>`. /// This can be useful when working around the borrow checker, /// or reusing functionality between systems via functions that accept query types. pub fn to_readonly(&self) -> Query<'_, 's, D::ReadOnly, F> { let new_state = self.state.as_readonly(); // SAFETY: This is memory safe because it turns the query immutable. unsafe { Query::new(self.world, new_state, self.last_run, self.this_run) } } /// Returns an [`Iterator`] over the read-only query items. /// /// This iterator is always guaranteed to return results from each matching entity once and only once. /// Iteration order is not guaranteed. /// /// # Example /// /// Here, the `report_names_system` iterates over the `Player` component of every entity that contains it: /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Component)] /// # struct Player { name: String } /// # /// fn report_names_system(query: Query<&Player>) { /// for player in &query { /// println!("Say hello to {}!", player.name); /// } /// } /// # bevy_ecs::system::assert_is_system(report_names_system); /// ``` /// /// # See also /// /// [`iter_mut`](Self::iter_mut) for mutable query items. #[inline] pub fn iter(&self) -> QueryIter<'_, 's, D::ReadOnly, F> { // SAFETY: // - `self.world` has permission to access the required components. // - The query is read-only, so it can be aliased even if it was originally mutable. unsafe { self.state .as_readonly() .iter_unchecked_manual(self.world, self.last_run, self.this_run) } } /// Returns an [`Iterator`] over the query items. /// /// This iterator is always guaranteed to return results from each matching entity once and only once. /// Iteration order is not guaranteed. /// /// # Example /// /// Here, the `gravity_system` updates the `Velocity` component of every entity that contains it: /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Component)] /// # struct Velocity { x: f32, y: f32, z: f32 } /// fn gravity_system(mut query: Query<&mut Velocity>) { /// const DELTA: f32 = 1.0 / 60.0; /// for mut velocity in &mut query { /// velocity.y -= 9.8 * DELTA; /// } /// } /// # bevy_ecs::system::assert_is_system(gravity_system); /// ``` /// /// # See also /// /// [`iter`](Self::iter) for read-only query items. #[inline] pub fn iter_mut(&mut self) -> QueryIter<'_, 's, D, F> { // SAFETY: `self.world` has permission to access the required components. unsafe { self.state .iter_unchecked_manual(self.world, self.last_run, self.this_run) } } /// Returns a [`QueryCombinationIter`] over all combinations of `K` read-only query items without repetition. /// /// This iterator is always guaranteed to return results from each unique pair of matching entities. /// Iteration order is not guaranteed. /// /// # Example /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// # /// fn some_system(query: Query<&ComponentA>) { /// for [a1, a2] in query.iter_combinations() { /// // ... /// } /// } /// ``` /// /// # See also /// /// - [`iter_combinations_mut`](Self::iter_combinations_mut) for mutable query item combinations. #[inline] pub fn iter_combinations( &self, ) -> QueryCombinationIter<'_, 's, D::ReadOnly, F, K> { // SAFETY: // - `self.world` has permission to access the required components. // - The query is read-only, so it can be aliased even if it was originally mutable. unsafe { self.state.as_readonly().iter_combinations_unchecked_manual( self.world, self.last_run, self.this_run, ) } } /// Returns a [`QueryCombinationIter`] over all combinations of `K` query items without repetition. /// /// This iterator is always guaranteed to return results from each unique pair of matching entities. /// Iteration order is not guaranteed. /// /// # Example /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct ComponentA; /// fn some_system(mut query: Query<&mut ComponentA>) { /// let mut combinations = query.iter_combinations_mut(); /// while let Some([mut a1, mut a2]) = combinations.fetch_next() { /// // mutably access components data /// } /// } /// ``` /// /// # See also /// /// - [`iter_combinations`](Self::iter_combinations) for read-only query item combinations. #[inline] pub fn iter_combinations_mut( &mut self, ) -> QueryCombinationIter<'_, 's, D, F, K> { // SAFETY: `self.world` has permission to access the required components. unsafe { self.state .iter_combinations_unchecked_manual(self.world, self.last_run, self.this_run) } } /// Returns an [`Iterator`] over the read-only query items generated from an [`Entity`] list. /// /// Items are returned in the order of the list of entities, and may not be unique if the input /// doesn't guarantee uniqueness. Entities that don't match the query are skipped. /// /// # Example /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct Counter { /// # value: i32 /// # } /// # /// // A component containing an entity list. /// #[derive(Component)] /// struct Friends { /// list: Vec, /// } /// /// fn system( /// friends_query: Query<&Friends>, /// counter_query: Query<&Counter>, /// ) { /// for friends in &friends_query { /// for counter in counter_query.iter_many(&friends.list) { /// println!("Friend's counter: {:?}", counter.value); /// } /// } /// } /// # bevy_ecs::system::assert_is_system(system); /// ``` /// /// # See also /// /// - [`iter_many_mut`](Self::iter_many_mut) to get mutable query items. #[inline] pub fn iter_many( &self, entities: EntityList, ) -> QueryManyIter<'_, 's, D::ReadOnly, F, EntityList::IntoIter> where EntityList::Item: Borrow, { // SAFETY: // - `self.world` has permission to access the required components. // - The query is read-only, so it can be aliased even if it was originally mutable. unsafe { self.state.as_readonly().iter_many_unchecked_manual( entities, self.world, self.last_run, self.this_run, ) } } /// Returns an iterator over the query items generated from an [`Entity`] list. /// /// Items are returned in the order of the list of entities, and may not be unique if the input /// doesnn't guarantee uniqueness. Entities that don't match the query are skipped. /// /// # Examples /// /// ``` /// # use bevy_ecs::prelude::*; /// #[derive(Component)] /// struct Counter { /// value: i32 /// } /// /// #[derive(Component)] /// struct Friends { /// list: Vec, /// } /// /// fn system( /// friends_query: Query<&Friends>, /// mut counter_query: Query<&mut Counter>, /// ) { /// for friends in &friends_query { /// let mut iter = counter_query.iter_many_mut(&friends.list); /// while let Some(mut counter) = iter.fetch_next() { /// println!("Friend's counter: {:?}", counter.value); /// counter.value += 1; /// } /// } /// } /// # bevy_ecs::system::assert_is_system(system); /// ``` #[inline] pub fn iter_many_mut( &mut self, entities: EntityList, ) -> QueryManyIter<'_, 's, D, F, EntityList::IntoIter> where EntityList::Item: Borrow, { // SAFETY: `self.world` has permission to access the required components. unsafe { self.state.iter_many_unchecked_manual( entities, self.world, self.last_run, self.this_run, ) } } /// Returns an [`Iterator`] over the query items. /// /// This iterator is always guaranteed to return results from each matching entity once and only once. /// Iteration order is not guaranteed. /// /// # Safety /// /// This function makes it possible to violate Rust's aliasing guarantees. /// You must make sure this call does not result in multiple mutable references to the same component. /// /// # See also /// /// - [`iter`](Self::iter) and [`iter_mut`](Self::iter_mut) for the safe versions. #[inline] pub unsafe fn iter_unsafe(&self) -> QueryIter<'_, 's, D, F> { // SAFETY: // - `self.world` has permission to access the required components. // - The caller ensures that this operation will not result in any aliased mutable accesses. unsafe { self.state .iter_unchecked_manual(self.world, self.last_run, self.this_run) } } /// Iterates over all possible combinations of `K` query items without repetition. /// /// This iterator is always guaranteed to return results from each unique pair of matching entities. /// Iteration order is not guaranteed. /// /// # Safety /// /// This allows aliased mutability. /// You must make sure this call does not result in multiple mutable references to the same component. /// /// # See also /// /// - [`iter_combinations`](Self::iter_combinations) and [`iter_combinations_mut`](Self::iter_combinations_mut) for the safe versions. #[inline] pub unsafe fn iter_combinations_unsafe( &self, ) -> QueryCombinationIter<'_, 's, D, F, K> { // SAFETY: // - `self.world` has permission to access the required components. // - The caller ensures that this operation will not result in any aliased mutable accesses. unsafe { self.state .iter_combinations_unchecked_manual(self.world, self.last_run, self.this_run) } } /// Returns an [`Iterator`] over the query items generated from an [`Entity`] list. /// /// Items are returned in the order of the list of entities, and may not be unique if the input /// doesnn't guarantee uniqueness. Entities that don't match the query are skipped. /// /// # Safety /// /// This allows aliased mutability and does not check for entity uniqueness. /// You must make sure this call does not result in multiple mutable references to the same component. /// Particular care must be taken when collecting the data (rather than iterating over it one item at a time) such as via [`Iterator::collect`]. /// /// # See also /// /// - [`iter_many_mut`](Self::iter_many_mut) to safely access the query items. pub unsafe fn iter_many_unsafe( &self, entities: EntityList, ) -> QueryManyIter<'_, 's, D, F, EntityList::IntoIter> where EntityList::Item: Borrow, { // SAFETY: // - `self.world` has permission to access the required components. // - The caller ensures that this operation will not result in any aliased mutable accesses. unsafe { self.state.iter_many_unchecked_manual( entities, self.world, self.last_run, self.this_run, ) } } /// Returns a parallel iterator over the query results for the given [`World`]. /// /// This parallel iterator is always guaranteed to return results from each matching entity once and /// only once. Iteration order and thread assignment is not guaranteed. /// /// If the `multithreaded` feature is disabled, iterating with this operates identically to [`Iterator::for_each`] /// on [`QueryIter`]. /// /// This can only be called for read-only queries, see [`par_iter_mut`] for write-queries. /// /// Note that you must use the `for_each` method to iterate over the /// results, see [`par_iter_mut`] for an example. /// /// [`par_iter_mut`]: Self::par_iter_mut /// [`World`]: crate::world::World #[inline] pub fn par_iter(&self) -> QueryParIter<'_, '_, D::ReadOnly, F> { QueryParIter { world: self.world, state: self.state.as_readonly(), last_run: self.last_run, this_run: self.this_run, batching_strategy: BatchingStrategy::new(), } } /// Returns a parallel iterator over the query results for the given [`World`]. /// /// This parallel iterator is always guaranteed to return results from each matching entity once and /// only once. Iteration order and thread assignment is not guaranteed. /// /// If the `multithreaded` feature is disabled, iterating with this operates identically to [`Iterator::for_each`] /// on [`QueryIter`]. /// /// This can only be called for mutable queries, see [`par_iter`] for read-only-queries. /// /// # Example /// /// Here, the `gravity_system` updates the `Velocity` component of every entity that contains it: /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Component)] /// # struct Velocity { x: f32, y: f32, z: f32 } /// fn gravity_system(mut query: Query<&mut Velocity>) { /// const DELTA: f32 = 1.0 / 60.0; /// query.par_iter_mut().for_each(|mut velocity| { /// velocity.y -= 9.8 * DELTA; /// }); /// } /// # bevy_ecs::system::assert_is_system(gravity_system); /// ``` /// /// [`par_iter`]: Self::par_iter /// [`World`]: crate::world::World #[inline] pub fn par_iter_mut(&mut self) -> QueryParIter<'_, '_, D, F> { QueryParIter { world: self.world, state: self.state, last_run: self.last_run, this_run: self.this_run, batching_strategy: BatchingStrategy::new(), } } /// Returns the read-only query item for the given [`Entity`]. /// /// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is returned instead. /// /// # Example /// /// Here, `get` is used to retrieve the exact query item of the entity specified by the `SelectedCharacter` resource. /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Resource)] /// # struct SelectedCharacter { entity: Entity } /// # #[derive(Component)] /// # struct Character { name: String } /// # /// fn print_selected_character_name_system( /// query: Query<&Character>, /// selection: Res /// ) /// { /// if let Ok(selected_character) = query.get(selection.entity) { /// println!("{}", selected_character.name); /// } /// } /// # bevy_ecs::system::assert_is_system(print_selected_character_name_system); /// ``` /// /// # See also /// /// - [`get_mut`](Self::get_mut) to get a mutable query item. #[inline] pub fn get(&self, entity: Entity) -> Result, QueryEntityError> { // SAFETY: system runs without conflicts with other systems. // same-system queries have runtime borrow checks when they conflict unsafe { self.state.as_readonly().get_unchecked_manual( self.world, entity, self.last_run, self.this_run, ) } } /// Returns the read-only query items for the given array of [`Entity`]. /// /// The returned query items are in the same order as the input. /// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is returned instead. /// The elements of the array do not need to be unique, unlike `get_many_mut`. /// /// # See also /// /// - [`get_many_mut`](Self::get_many_mut) to get mutable query items. /// - [`many`](Self::many) for the panicking version. #[inline] pub fn get_many( &self, entities: [Entity; N], ) -> Result<[ROQueryItem<'_, D>; N], QueryEntityError> { // SAFETY: // - `&self` ensures there is no mutable access to any components accessible to this query. // - `self.world` matches `self.state`. unsafe { self.state .get_many_read_only_manual(self.world, entities, self.last_run, self.this_run) } } /// Returns the read-only query items for the given array of [`Entity`]. /// /// # Panics /// /// This method panics if there is a query mismatch or a non-existing entity. /// /// # Examples /// ``` no_run /// use bevy_ecs::prelude::*; /// /// #[derive(Component)] /// struct Targets([Entity; 3]); /// /// #[derive(Component)] /// struct Position{ /// x: i8, /// y: i8 /// }; /// /// impl Position { /// fn distance(&self, other: &Position) -> i8 { /// // Manhattan distance is way easier to compute! /// (self.x - other.x).abs() + (self.y - other.y).abs() /// } /// } /// /// fn check_all_targets_in_range(targeting_query: Query<(Entity, &Targets, &Position)>, targets_query: Query<&Position>){ /// for (targeting_entity, targets, origin) in &targeting_query { /// // We can use "destructuring" to unpack the results nicely /// let [target_1, target_2, target_3] = targets_query.many(targets.0); /// /// assert!(target_1.distance(origin) <= 5); /// assert!(target_2.distance(origin) <= 5); /// assert!(target_3.distance(origin) <= 5); /// } /// } /// ``` /// /// # See also /// /// - [`get_many`](Self::get_many) for the non-panicking version. #[inline] pub fn many(&self, entities: [Entity; N]) -> [ROQueryItem<'_, D>; N] { match self.get_many(entities) { Ok(items) => items, Err(error) => panic!("Cannot get query results: {error}"), } } /// Returns the query item for the given [`Entity`]. /// /// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is returned instead. /// /// # Example /// /// Here, `get_mut` is used to retrieve the exact query item of the entity specified by the `PoisonedCharacter` resource. /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Resource)] /// # struct PoisonedCharacter { character_id: Entity } /// # #[derive(Component)] /// # struct Health(u32); /// # /// fn poison_system(mut query: Query<&mut Health>, poisoned: Res) { /// if let Ok(mut health) = query.get_mut(poisoned.character_id) { /// health.0 -= 1; /// } /// } /// # bevy_ecs::system::assert_is_system(poison_system); /// ``` /// /// # See also /// /// - [`get`](Self::get) to get a read-only query item. #[inline] pub fn get_mut(&mut self, entity: Entity) -> Result, QueryEntityError> { // SAFETY: system runs without conflicts with other systems. // same-system queries have runtime borrow checks when they conflict unsafe { self.state .get_unchecked_manual(self.world, entity, self.last_run, self.this_run) } } /// Returns the query items for the given array of [`Entity`]. /// /// The returned query items are in the same order as the input. /// In case of a nonexisting entity, duplicate entities or mismatched component, a [`QueryEntityError`] is returned instead. /// /// # See also /// /// - [`get_many`](Self::get_many) to get read-only query items. /// - [`many_mut`](Self::many_mut) for the panicking version. #[inline] pub fn get_many_mut( &mut self, entities: [Entity; N], ) -> Result<[D::Item<'_>; N], QueryEntityError> { // SAFETY: scheduler ensures safe Query world access unsafe { self.state .get_many_unchecked_manual(self.world, entities, self.last_run, self.this_run) } } /// Returns the query items for the given array of [`Entity`]. /// /// # Panics /// /// This method panics if there is a query mismatch, a non-existing entity, or the same `Entity` is included more than once in the array. /// /// # Examples /// /// ``` no_run /// use bevy_ecs::prelude::*; /// /// #[derive(Component)] /// struct Spring{ /// connected_entities: [Entity; 2], /// strength: f32, /// } /// /// #[derive(Component)] /// struct Position { /// x: f32, /// y: f32, /// } /// /// #[derive(Component)] /// struct Force { /// x: f32, /// y: f32, /// } /// /// fn spring_forces(spring_query: Query<&Spring>, mut mass_query: Query<(&Position, &mut Force)>){ /// for spring in &spring_query { /// // We can use "destructuring" to unpack our query items nicely /// let [(position_1, mut force_1), (position_2, mut force_2)] = mass_query.many_mut(spring.connected_entities); /// /// force_1.x += spring.strength * (position_1.x - position_2.x); /// force_1.y += spring.strength * (position_1.y - position_2.y); /// /// // Silence borrow-checker: I have split your mutable borrow! /// force_2.x += spring.strength * (position_2.x - position_1.x); /// force_2.y += spring.strength * (position_2.y - position_1.y); /// } /// } /// ``` /// /// # See also /// /// - [`get_many_mut`](Self::get_many_mut) for the non panicking version. /// - [`many`](Self::many) to get read-only query items. #[inline] pub fn many_mut(&mut self, entities: [Entity; N]) -> [D::Item<'_>; N] { match self.get_many_mut(entities) { Ok(items) => items, Err(error) => panic!("Cannot get query result: {error}"), } } /// Returns the query item for the given [`Entity`]. /// /// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is returned instead. /// /// # Safety /// /// This function makes it possible to violate Rust's aliasing guarantees. /// You must make sure this call does not result in multiple mutable references to the same component. /// /// # See also /// /// - [`get_mut`](Self::get_mut) for the safe version. #[inline] pub unsafe fn get_unchecked(&self, entity: Entity) -> Result, QueryEntityError> { // SEMI-SAFETY: system runs without conflicts with other systems. // same-system queries have runtime borrow checks when they conflict unsafe { self.state .get_unchecked_manual(self.world, entity, self.last_run, self.this_run) } } /// Returns a single read-only query item when there is exactly one entity matching the query. /// /// # Panics /// /// This method panics if the number of query items is **not** exactly one. /// /// # Example /// /// ``` /// # use bevy_ecs::prelude::*; /// # #[derive(Component)] /// # struct Player; /// # #[derive(Component)] /// # struct Position(f32, f32); /// fn player_system(query: Query<&Position, With>) { /// let player_position = query.single(); /// // do something with player_position /// } /// # bevy_ecs::system::assert_is_system(player_system); /// ``` /// /// # See also /// /// - [`get_single`](Self::get_single) for the non-panicking version. /// - [`single_mut`](Self::single_mut) to get the mutable query item. #[track_caller] pub fn single(&self) -> ROQueryItem<'_, D> { self.get_single().unwrap() } /// Returns a single read-only query item when there is exactly one entity matching the query. /// /// If the number of query items is not exactly one, a [`QuerySingleError`] is returned instead. /// /// # Example /// /// ``` /// # use bevy_ecs::prelude::*; /// # use bevy_ecs::query::QuerySingleError; /// # #[derive(Component)] /// # struct PlayerScore(i32); /// fn player_scoring_system(query: Query<&PlayerScore>) { /// match query.get_single() { /// Ok(PlayerScore(score)) => { /// println!("Score: {}", score); /// } /// Err(QuerySingleError::NoEntities(_)) => { /// println!("Error: There is no player!"); /// } /// Err(QuerySingleError::MultipleEntities(_)) => { /// println!("Error: There is more than one player!"); /// } /// } /// } /// # bevy_ecs::system::assert_is_system(player_scoring_system); /// ``` /// /// # See also /// /// - [`get_single_mut`](Self::get_single_mut) to get the mutable query item. /// - [`single`](Self::single) for the panicking version. #[inline] pub fn get_single(&self) -> Result, QuerySingleError> { // SAFETY: // the query ensures that the components it accesses are not mutably accessible somewhere else // and the query is read only. unsafe { self.state.as_readonly().get_single_unchecked_manual( self.world, self.last_run, self.this_run, ) } } /// Returns a single query item when there is exactly one entity matching the query. /// /// # Panics /// /// This method panics if the number of query item is **not** exactly one. /// /// # Example /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Component)] /// # struct Player; /// # #[derive(Component)] /// # struct Health(u32); /// # /// fn regenerate_player_health_system(mut query: Query<&mut Health, With>) { /// let mut health = query.single_mut(); /// health.0 += 1; /// } /// # bevy_ecs::system::assert_is_system(regenerate_player_health_system); /// ``` /// /// # See also /// /// - [`get_single_mut`](Self::get_single_mut) for the non-panicking version. /// - [`single`](Self::single) to get the read-only query item. #[track_caller] pub fn single_mut(&mut self) -> D::Item<'_> { self.get_single_mut().unwrap() } /// Returns a single query item when there is exactly one entity matching the query. /// /// If the number of query items is not exactly one, a [`QuerySingleError`] is returned instead. /// /// # Example /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Component)] /// # struct Player; /// # #[derive(Component)] /// # struct Health(u32); /// # /// fn regenerate_player_health_system(mut query: Query<&mut Health, With>) { /// let mut health = query.get_single_mut().expect("Error: Could not find a single player."); /// health.0 += 1; /// } /// # bevy_ecs::system::assert_is_system(regenerate_player_health_system); /// ``` /// /// # See also /// /// - [`get_single`](Self::get_single) to get the read-only query item. /// - [`single_mut`](Self::single_mut) for the panicking version. #[inline] pub fn get_single_mut(&mut self) -> Result, QuerySingleError> { // SAFETY: // the query ensures mutable access to the components it accesses, and the query // is uniquely borrowed unsafe { self.state .get_single_unchecked_manual(self.world, self.last_run, self.this_run) } } /// Returns `true` if there are no query items. /// /// This is equivalent to `self.iter().next().is_none()`, and thus the worst case runtime will be `O(n)` /// where `n` is the number of *potential* matches. This can be notably expensive for queries that rely /// on non-archetypal filters such as [`Added`] or [`Changed`] which must individually check each query /// result for a match. /// /// # Example /// /// Here, the score is increased only if an entity with a `Player` component is present in the world: /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Component)] /// # struct Player; /// # #[derive(Resource)] /// # struct Score(u32); /// fn update_score_system(query: Query<(), With>, mut score: ResMut) { /// if !query.is_empty() { /// score.0 += 1; /// } /// } /// # bevy_ecs::system::assert_is_system(update_score_system); /// ``` /// /// [`Added`]: crate::query::Added /// [`Changed`]: crate::query::Changed #[inline] pub fn is_empty(&self) -> bool { // SAFETY: // - `self.world` has permission to read any data required by the WorldQuery. // - `&self` ensures that no one currently has write access. // - `self.world` matches `self.state`. unsafe { self.state .is_empty_unsafe_world_cell(self.world, self.last_run, self.this_run) } } /// Returns `true` if the given [`Entity`] matches the query. /// /// # Example /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Component)] /// # struct InRange; /// # /// # #[derive(Resource)] /// # struct Target { /// # entity: Entity, /// # } /// # /// fn targeting_system(in_range_query: Query<&InRange>, target: Res) { /// if in_range_query.contains(target.entity) { /// println!("Bam!") /// } /// } /// # bevy_ecs::system::assert_is_system(targeting_system); /// ``` #[inline] pub fn contains(&self, entity: Entity) -> bool { // SAFETY: NopFetch does not access any members while &self ensures no one has exclusive access unsafe { self.state .as_nop() .get_unchecked_manual(self.world, entity, self.last_run, self.this_run) .is_ok() } } /// Returns a [`QueryLens`] that can be used to get a query with a more general fetch. /// /// For example, this can transform a `Query<(&A, &mut B)>` to a `Query<&B>`. /// This can be useful for passing the query to another function. Note that since /// filter terms are dropped, non-archetypal filters like [`Added`](crate::query::Added) and /// [`Changed`](crate::query::Changed) will not be respected. To maintain or change filter /// terms see [`Self::transmute_lens_filtered`] /// /// ## Panics /// /// This will panic if `NewD` is not a subset of the original fetch `Q` /// /// ## Example /// /// ```rust /// # use bevy_ecs::prelude::*; /// # use bevy_ecs::system::QueryLens; /// # /// # #[derive(Component)] /// # struct A(usize); /// # /// # #[derive(Component)] /// # struct B(usize); /// # /// # let mut world = World::new(); /// # /// # world.spawn((A(10), B(5))); /// # /// fn reusable_function(lens: &mut QueryLens<&A>) { /// assert_eq!(lens.query().single().0, 10); /// } /// /// // We can use the function in a system that takes the exact query. /// fn system_1(mut query: Query<&A>) { /// reusable_function(&mut query.as_query_lens()); /// } /// /// // We can also use it with a query that does not match exactly /// // by transmuting it. /// fn system_2(mut query: Query<(&mut A, &B)>) { /// let mut lens = query.transmute_lens::<&A>(); /// reusable_function(&mut lens); /// } /// /// # let mut schedule = Schedule::default(); /// # schedule.add_systems((system_1, system_2)); /// # schedule.run(&mut world); /// ``` /// /// ## Allowed Transmutes /// /// Besides removing parameters from the query, you can also /// make limited changes to the types of parameters. /// /// * Can always add/remove `Entity` /// * `Ref` <-> `&T` /// * `&mut T` -> `&T` /// * `&mut T` -> `Ref` /// * [`EntityMut`](crate::world::EntityMut) -> [`EntityRef`](crate::world::EntityRef) /// pub fn transmute_lens(&mut self) -> QueryLens<'_, NewD> { self.transmute_lens_filtered::() } /// Equivalent to [`Self::transmute_lens`] but also includes a [`QueryFilter`] type. /// /// Note that the lens will iterate the same tables and archetypes as the original query. This means that /// additional archetypal query terms like [`With`](crate::query::With) and [`Without`](crate::query::Without) /// will not necessarily be respected and non-archetypal terms like [`Added`](crate::query::Added) and /// [`Changed`](crate::query::Changed) will only be respected if they are in the type signature. pub fn transmute_lens_filtered( &mut self, ) -> QueryLens<'_, NewD, NewF> { // SAFETY: // - We have exclusive access to the query // - `self` has correctly captured it's access // - Access is checked to be a subset of the query's access when the state is created. let world = unsafe { self.world.world() }; let state = self.state.transmute_filtered::(world); QueryLens { world: self.world, state, last_run: self.last_run, this_run: self.this_run, } } /// Gets a [`QueryLens`] with the same accesses as the existing query pub fn as_query_lens(&mut self) -> QueryLens<'_, D> { self.transmute_lens() } /// Returns a [`QueryLens`] that can be used to get a query with the combined fetch. /// /// For example, this can take a `Query<&A>` and a `Queryy<&B>` and return a `Query<&A, &B>`. /// The returned query will only return items with both `A` and `B`. Note that since filter /// are dropped, non-archetypal filters like `Added` and `Changed` will no be respected. /// To maintain or change filter terms see `Self::join_filtered`. /// /// ## Example /// /// ```rust /// # use bevy_ecs::prelude::*; /// # use bevy_ecs::system::QueryLens; /// # /// # #[derive(Component)] /// # struct Transform; /// # /// # #[derive(Component)] /// # struct Player; /// # /// # #[derive(Component)] /// # struct Enemy; /// # /// # let mut world = World::default(); /// # world.spawn((Transform, Player)); /// # world.spawn((Transform, Enemy)); /// /// fn system( /// mut transforms: Query<&Transform>, /// mut players: Query<&Player>, /// mut enemies: Query<&Enemy> /// ) { /// let mut players_transforms: QueryLens<(&Transform, &Player)> = transforms.join(&mut players); /// for (transform, player) in &players_transforms.query() { /// // do something with a and b /// } /// /// let mut enemies_transforms: QueryLens<(&Transform, &Enemy)> = transforms.join(&mut enemies); /// for (transform, enemy) in &enemies_transforms.query() { /// // do something with a and b /// } /// } /// /// # let mut schedule = Schedule::default(); /// # schedule.add_systems(system); /// # schedule.run(&mut world); /// ``` /// ## Panics /// /// This will panic if `NewD` is not a subset of the union of the original fetch `Q` and `OtherD`. /// /// ## Allowed Transmutes /// /// Like `transmute_lens` the query terms can be changed with some restrictions. /// See [`Self::transmute_lens`] for more details. pub fn join( &mut self, other: &mut Query, ) -> QueryLens<'_, NewD> { self.join_filtered(other) } /// Equivalent to [`Self::join`] but also includes a [`QueryFilter`] type. /// /// Note that the lens with iterate a subset of the original queries tables /// and archetypes. This means that additional archetypal query terms like /// `With` and `Without` will not necessarily be respected and non-archetypal /// terms like `Added` and `Changed` will only be respected if they are in /// the type signature. pub fn join_filtered< OtherD: QueryData, OtherF: QueryFilter, NewD: QueryData, NewF: QueryFilter, >( &mut self, other: &mut Query, ) -> QueryLens<'_, NewD, NewF> { // SAFETY: // - The queries have correctly captured their access. // - We have exclusive access to both queries. // - Access for QueryLens is checked when state is created. let world = unsafe { self.world.world() }; let state = self .state .join_filtered::(world, other.state); QueryLens { world: self.world, state, last_run: self.last_run, this_run: self.this_run, } } } impl<'w, 's, D: QueryData, F: QueryFilter> IntoIterator for &'w Query<'_, 's, D, F> { type Item = ROQueryItem<'w, D>; type IntoIter = QueryIter<'w, 's, D::ReadOnly, F>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'w, 's, D: QueryData, F: QueryFilter> IntoIterator for &'w mut Query<'_, 's, D, F> { type Item = D::Item<'w>; type IntoIter = QueryIter<'w, 's, D, F>; fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } impl<'w, 's, D: ReadOnlyQueryData, F: QueryFilter> Query<'w, 's, D, F> { /// Returns the query item for the given [`Entity`], with the actual "inner" world lifetime. /// /// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is /// returned instead. /// /// This can only return immutable data (mutable data will be cast to an immutable form). /// See [`get_mut`](Self::get_mut) for queries that contain at least one mutable component. /// /// # Example /// /// Here, `get` is used to retrieve the exact query item of the entity specified by the /// `SelectedCharacter` resource. /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Resource)] /// # struct SelectedCharacter { entity: Entity } /// # #[derive(Component)] /// # struct Character { name: String } /// # /// fn print_selected_character_name_system( /// query: Query<&Character>, /// selection: Res /// ) /// { /// if let Ok(selected_character) = query.get(selection.entity) { /// println!("{}", selected_character.name); /// } /// } /// # bevy_ecs::system::assert_is_system(print_selected_character_name_system); /// ``` #[inline] pub fn get_inner(&self, entity: Entity) -> Result, QueryEntityError> { // SAFETY: system runs without conflicts with other systems. // same-system queries have runtime borrow checks when they conflict unsafe { self.state.as_readonly().get_unchecked_manual( self.world, entity, self.last_run, self.this_run, ) } } /// Returns an [`Iterator`] over the query items, with the actual "inner" world lifetime. /// /// This can only return immutable data (mutable data will be cast to an immutable form). /// See [`Self::iter_mut`] for queries that contain at least one mutable component. /// /// # Example /// /// Here, the `report_names_system` iterates over the `Player` component of every entity /// that contains it: /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// # #[derive(Component)] /// # struct Player { name: String } /// # /// fn report_names_system(query: Query<&Player>) { /// for player in &query { /// println!("Say hello to {}!", player.name); /// } /// } /// # bevy_ecs::system::assert_is_system(report_names_system); /// ``` #[inline] pub fn iter_inner(&self) -> QueryIter<'w, 's, D::ReadOnly, F> { // SAFETY: system runs without conflicts with other systems. // same-system queries have runtime borrow checks when they conflict unsafe { self.state .as_readonly() .iter_unchecked_manual(self.world, self.last_run, self.this_run) } } } /// Type returned from [`Query::transmute_lens`] containing the new [`QueryState`]. /// /// Call [`query`](QueryLens::query) or [`into`](Into::into) to construct the resulting [`Query`] pub struct QueryLens<'w, Q: QueryData, F: QueryFilter = ()> { world: UnsafeWorldCell<'w>, state: QueryState, last_run: Tick, this_run: Tick, } impl<'w, Q: QueryData, F: QueryFilter> QueryLens<'w, Q, F> { /// Create a [`Query`] from the underlying [`QueryState`]. pub fn query(&mut self) -> Query<'w, '_, Q, F> { Query { world: self.world, state: &self.state, last_run: self.last_run, this_run: self.this_run, } } } impl<'w, 's, Q: QueryData, F: QueryFilter> From<&'s mut QueryLens<'w, Q, F>> for Query<'w, 's, Q, F> { fn from(value: &'s mut QueryLens<'w, Q, F>) -> Query<'w, 's, Q, F> { value.query() } } impl<'w, 'q, Q: QueryData, F: QueryFilter> From<&'q mut Query<'w, '_, Q, F>> for QueryLens<'q, Q, F> { fn from(value: &'q mut Query<'w, '_, Q, F>) -> QueryLens<'q, Q, F> { value.transmute_lens_filtered() } }