use std::any::{Any, TypeId}; use std::fmt::{Debug, Formatter}; use std::hash::{Hash, Hasher}; use bevy_reflect_derive::impl_type_path; use crate::utility::reflect_hasher; use crate::{ self as bevy_reflect, ApplyError, FromReflect, MaybeTyped, Reflect, ReflectKind, ReflectMut, ReflectOwned, ReflectRef, TypeInfo, TypePath, TypePathTable, }; /// A trait used to power [list-like] operations via [reflection]. /// /// This corresponds to types, like [`Vec`], which contain an ordered sequence /// of elements that implement [`Reflect`]. /// /// Unlike the [`Array`](crate::Array) trait, implementors of this trait are not expected to /// maintain a constant length. /// Methods like [insertion](List::insert) and [removal](List::remove) explicitly allow for their /// internal size to change. /// /// [`push`](List::push) and [`pop`](List::pop) have default implementations, /// however it will generally be more performant to implement them manually /// as the default implementation uses a very naive approach to find the correct position. /// /// This trait expects its elements to be ordered linearly from front to back. /// The _front_ element starts at index 0 with the _back_ element ending at the largest index. /// This contract above should be upheld by any manual implementors. /// /// Due to the [type-erasing] nature of the reflection API as a whole, /// this trait does not make any guarantees that the implementor's elements /// are homogeneous (i.e. all the same type). /// /// # Example /// /// ``` /// use bevy_reflect::{Reflect, List}; /// /// let foo: &mut dyn List = &mut vec![123_u32, 456_u32, 789_u32]; /// assert_eq!(foo.len(), 3); /// /// let last_field: Box = foo.pop().unwrap(); /// assert_eq!(last_field.downcast_ref::(), Some(&789)); /// ``` /// /// [list-like]: https://doc.rust-lang.org/book/ch08-01-vectors.html /// [reflection]: crate /// [type-erasing]: https://doc.rust-lang.org/book/ch17-02-trait-objects.html pub trait List: Reflect { /// Returns a reference to the element at `index`, or `None` if out of bounds. fn get(&self, index: usize) -> Option<&dyn Reflect>; /// Returns a mutable reference to the element at `index`, or `None` if out of bounds. fn get_mut(&mut self, index: usize) -> Option<&mut dyn Reflect>; /// Inserts an element at position `index` within the list, /// shifting all elements after it towards the back of the list. /// /// # Panics /// Panics if `index > len`. fn insert(&mut self, index: usize, element: Box); /// Removes and returns the element at position `index` within the list, /// shifting all elements before it towards the front of the list. /// /// # Panics /// Panics if `index` is out of bounds. fn remove(&mut self, index: usize) -> Box; /// Appends an element to the _back_ of the list. fn push(&mut self, value: Box) { self.insert(self.len(), value); } /// Removes the _back_ element from the list and returns it, or [`None`] if it is empty. fn pop(&mut self) -> Option> { if self.is_empty() { None } else { Some(self.remove(self.len() - 1)) } } /// Returns the number of elements in the list. fn len(&self) -> usize; /// Returns `true` if the collection contains no elements. fn is_empty(&self) -> bool { self.len() == 0 } /// Returns an iterator over the list. fn iter(&self) -> ListIter; /// Drain the elements of this list to get a vector of owned values. fn drain(self: Box) -> Vec>; /// Clones the list, producing a [`DynamicList`]. fn clone_dynamic(&self) -> DynamicList { DynamicList { represented_type: self.get_represented_type_info(), values: self.iter().map(Reflect::clone_value).collect(), } } } /// A container for compile-time list info. #[derive(Clone, Debug)] pub struct ListInfo { type_path: TypePathTable, type_id: TypeId, item_info: fn() -> Option<&'static TypeInfo>, item_type_path: TypePathTable, item_type_id: TypeId, #[cfg(feature = "documentation")] docs: Option<&'static str>, } impl ListInfo { /// Create a new [`ListInfo`]. pub fn new() -> Self { Self { type_path: TypePathTable::of::(), type_id: TypeId::of::(), item_info: TItem::maybe_type_info, item_type_path: TypePathTable::of::(), item_type_id: TypeId::of::(), #[cfg(feature = "documentation")] docs: None, } } /// Sets the docstring for this list. #[cfg(feature = "documentation")] pub fn with_docs(self, docs: Option<&'static str>) -> Self { Self { docs, ..self } } /// A representation of the type path of the list. /// /// Provides dynamic access to all methods on [`TypePath`]. pub fn type_path_table(&self) -> &TypePathTable { &self.type_path } /// The [stable, full type path] of the list. /// /// Use [`type_path_table`] if you need access to the other methods on [`TypePath`]. /// /// [stable, full type path]: TypePath /// [`type_path_table`]: Self::type_path_table pub fn type_path(&self) -> &'static str { self.type_path_table().path() } /// The [`TypeId`] of the list. pub fn type_id(&self) -> TypeId { self.type_id } /// Check if the given type matches the list type. pub fn is(&self) -> bool { TypeId::of::() == self.type_id } /// The [`TypeInfo`] of the list item. /// /// Returns `None` if the list item does not contain static type information, /// such as for dynamic types. pub fn item_info(&self) -> Option<&'static TypeInfo> { (self.item_info)() } /// A representation of the type path of the list item. /// /// Provides dynamic access to all methods on [`TypePath`]. pub fn item_type_path_table(&self) -> &TypePathTable { &self.item_type_path } /// The [`TypeId`] of the list item. pub fn item_type_id(&self) -> TypeId { self.item_type_id } /// Check if the given type matches the list item type. pub fn item_is(&self) -> bool { TypeId::of::() == self.item_type_id } /// The docstring of this list, if any. #[cfg(feature = "documentation")] pub fn docs(&self) -> Option<&'static str> { self.docs } } /// A list of reflected values. #[derive(Default)] pub struct DynamicList { represented_type: Option<&'static TypeInfo>, values: Vec>, } impl DynamicList { /// Sets the [type] to be represented by this `DynamicList`. /// # Panics /// /// Panics if the given [type] is not a [`TypeInfo::List`]. /// /// [type]: TypeInfo pub fn set_represented_type(&mut self, represented_type: Option<&'static TypeInfo>) { if let Some(represented_type) = represented_type { assert!( matches!(represented_type, TypeInfo::List(_)), "expected TypeInfo::List but received: {:?}", represented_type ); } self.represented_type = represented_type; } /// Appends a typed value to the list. pub fn push(&mut self, value: T) { self.values.push(Box::new(value)); } /// Appends a [`Reflect`] trait object to the list. pub fn push_box(&mut self, value: Box) { self.values.push(value); } } impl List for DynamicList { fn get(&self, index: usize) -> Option<&dyn Reflect> { self.values.get(index).map(|value| &**value) } fn get_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> { self.values.get_mut(index).map(|value| &mut **value) } fn insert(&mut self, index: usize, element: Box) { self.values.insert(index, element); } fn remove(&mut self, index: usize) -> Box { self.values.remove(index) } fn push(&mut self, value: Box) { DynamicList::push_box(self, value); } fn pop(&mut self) -> Option> { self.values.pop() } fn len(&self) -> usize { self.values.len() } fn iter(&self) -> ListIter { ListIter::new(self) } fn drain(self: Box) -> Vec> { self.values } fn clone_dynamic(&self) -> DynamicList { DynamicList { represented_type: self.represented_type, values: self .values .iter() .map(|value| value.clone_value()) .collect(), } } } impl Reflect for DynamicList { #[inline] fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { self.represented_type } #[inline] fn into_any(self: Box) -> Box { self } #[inline] fn as_any(&self) -> &dyn Any { self } #[inline] fn as_any_mut(&mut self) -> &mut dyn Any { self } #[inline] fn into_reflect(self: Box) -> Box { self } #[inline] fn as_reflect(&self) -> &dyn Reflect { self } #[inline] fn as_reflect_mut(&mut self) -> &mut dyn Reflect { self } fn apply(&mut self, value: &dyn Reflect) { list_apply(self, value); } fn try_apply(&mut self, value: &dyn Reflect) -> Result<(), ApplyError> { list_try_apply(self, value) } #[inline] fn set(&mut self, value: Box) -> Result<(), Box> { *self = value.take()?; Ok(()) } #[inline] fn reflect_kind(&self) -> ReflectKind { ReflectKind::List } #[inline] fn reflect_ref(&self) -> ReflectRef { ReflectRef::List(self) } #[inline] fn reflect_mut(&mut self) -> ReflectMut { ReflectMut::List(self) } #[inline] fn reflect_owned(self: Box) -> ReflectOwned { ReflectOwned::List(self) } #[inline] fn clone_value(&self) -> Box { Box::new(self.clone_dynamic()) } #[inline] fn reflect_hash(&self) -> Option { list_hash(self) } fn reflect_partial_eq(&self, value: &dyn Reflect) -> Option { list_partial_eq(self, value) } fn debug(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "DynamicList(")?; list_debug(self, f)?; write!(f, ")") } #[inline] fn is_dynamic(&self) -> bool { true } } impl_type_path!((in bevy_reflect) DynamicList); #[cfg(feature = "functions")] crate::func::macros::impl_function_traits!(DynamicList); impl Debug for DynamicList { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { self.debug(f) } } impl IntoIterator for DynamicList { type Item = Box; type IntoIter = std::vec::IntoIter; fn into_iter(self) -> Self::IntoIter { self.values.into_iter() } } /// An iterator over an [`List`]. pub struct ListIter<'a> { list: &'a dyn List, index: usize, } impl<'a> ListIter<'a> { /// Creates a new [`ListIter`]. #[inline] pub const fn new(list: &'a dyn List) -> ListIter { ListIter { list, index: 0 } } } impl<'a> Iterator for ListIter<'a> { type Item = &'a dyn Reflect; #[inline] fn next(&mut self) -> Option { let value = self.list.get(self.index); self.index += value.is_some() as usize; value } #[inline] fn size_hint(&self) -> (usize, Option) { let size = self.list.len(); (size, Some(size)) } } impl<'a> ExactSizeIterator for ListIter<'a> {} /// Returns the `u64` hash of the given [list](List). #[inline] pub fn list_hash(list: &L) -> Option { let mut hasher = reflect_hasher(); Any::type_id(list).hash(&mut hasher); list.len().hash(&mut hasher); for value in list.iter() { hasher.write_u64(value.reflect_hash()?); } Some(hasher.finish()) } /// Applies the elements of `b` to the corresponding elements of `a`. /// /// If the length of `b` is greater than that of `a`, the excess elements of `b` /// are cloned and appended to `a`. /// /// # Panics /// /// This function panics if `b` is not a list. #[inline] pub fn list_apply(a: &mut L, b: &dyn Reflect) { if let Err(err) = list_try_apply(a, b) { panic!("{err}"); } } /// Tries to apply the elements of `b` to the corresponding elements of `a` and /// returns a Result. /// /// If the length of `b` is greater than that of `a`, the excess elements of `b` /// are cloned and appended to `a`. /// /// # Errors /// /// This function returns an [`ApplyError::MismatchedKinds`] if `b` is not a list or if /// applying elements to each other fails. #[inline] pub fn list_try_apply(a: &mut L, b: &dyn Reflect) -> Result<(), ApplyError> { if let ReflectRef::List(list_value) = b.reflect_ref() { for (i, value) in list_value.iter().enumerate() { if i < a.len() { if let Some(v) = a.get_mut(i) { v.try_apply(value)?; } } else { List::push(a, value.clone_value()); } } } else { return Err(ApplyError::MismatchedKinds { from_kind: b.reflect_kind(), to_kind: ReflectKind::List, }); } Ok(()) } /// Compares a [`List`] with a [`Reflect`] value. /// /// Returns true if and only if all of the following are true: /// - `b` is a list; /// - `b` is the same length as `a`; /// - [`Reflect::reflect_partial_eq`] returns `Some(true)` for pairwise elements of `a` and `b`. /// /// Returns [`None`] if the comparison couldn't even be performed. #[inline] pub fn list_partial_eq(a: &L, b: &dyn Reflect) -> Option { let ReflectRef::List(list) = b.reflect_ref() else { return Some(false); }; if a.len() != list.len() { return Some(false); } for (a_value, b_value) in a.iter().zip(list.iter()) { let eq_result = a_value.reflect_partial_eq(b_value); if let failed @ (Some(false) | None) = eq_result { return failed; } } Some(true) } /// The default debug formatter for [`List`] types. /// /// # Example /// ``` /// use bevy_reflect::Reflect; /// /// let my_list: &dyn Reflect = &vec![1, 2, 3]; /// println!("{:#?}", my_list); /// /// // Output: /// /// // [ /// // 1, /// // 2, /// // 3, /// // ] /// ``` #[inline] pub fn list_debug(dyn_list: &dyn List, f: &mut Formatter<'_>) -> std::fmt::Result { let mut debug = f.debug_list(); for item in dyn_list.iter() { debug.entry(&item as &dyn Debug); } debug.finish() } #[cfg(test)] mod tests { use super::DynamicList; use crate::{Reflect, ReflectRef}; use std::assert_eq; #[test] fn test_into_iter() { let mut list = DynamicList::default(); list.push(0usize); list.push(1usize); list.push(2usize); let items = list.into_iter(); for (index, item) in items.into_iter().enumerate() { let value = item.take::().expect("couldn't downcast to usize"); assert_eq!(index, value); } } #[test] fn next_index_increment() { const SIZE: usize = if cfg!(debug_assertions) { 4 } else { // If compiled in release mode, verify we dont overflow usize::MAX }; let b = Box::new(vec![(); SIZE]).into_reflect(); let ReflectRef::List(list) = b.reflect_ref() else { panic!("Not a list..."); }; let mut iter = list.iter(); iter.index = SIZE - 1; assert!(iter.next().is_some()); // When None we should no longer increase index assert!(iter.next().is_none()); assert!(iter.index == SIZE); assert!(iter.next().is_none()); assert!(iter.index == SIZE); } }